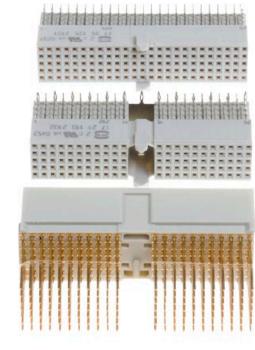

11. har-bus® HM Connectors

har-bus[®] HM connectors are the basis for configuring high-performing backplanes for control and industrial computer systems in 19" technology. These connectors are standardized for the CompactPCI and the VME64x bus. All connectors are also available as a solder version.

Contents	Page
harbus [®] HM Standard	
Introduction	11.02
General information and technical characteristics	11.04
Гуреs A, B, AB, C with 5 + 2 rows	
Straight male connectors	11.12
Angled female connectors	11.24
Type Monoblock 47	
Straight male connectors	11.28
Angled female connectors	11.30
	11.50
Types D, E, DE with 8 + 2 rows – Straight male connectors	
Types D, E, DE with 8 + 2 rows – Straight male connectors	
Types D, E, DE with 8 + 2 rows – Straight male connectors	11.30
Types D, E, DE with 8 + 2 rows – Straight male connectors	11.32
Types D, E, DE with 8 + 2 rows – Straight male connectors	11.32 11.36 11.38
Types D, E, DE with 8 + 2 rows – Straight male connectors	11.32
Types D, E, DE with 8 + 2 rows – Straight male connectors	11.32 11.36 11.38
Types D, E, DE with 8 + 2 rows – Straight male connectors	11.32 11.36 11.38 11.40
Types D, E, DE with 8 + 2 rows – Straight male connectors	11.32 11.36 11.38 11.40 11.41

11. har-bus® HM Connectors

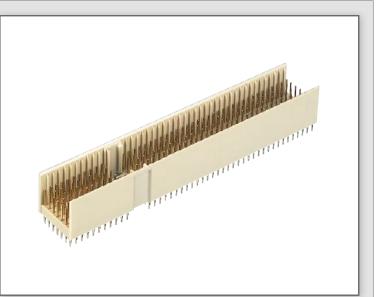
HARD METRIC CONNECTORS har-bus® HM IN 2.00 mm PITCH


har-bus® HM connectors are the basis for configuring highperforming backplanes for control and industrial computer systems in 19" technology.

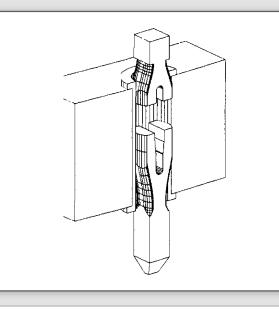
HARTING offers 5 row and 8 row 2 mm hard metric connectors har-bus[®] HM according to IEC 61076-4-101. The product family includes all standard types such as all variants for CompactPCI, inclusive Hot Swap and CTI (Computer Telephony Integration). The modules are defined as the 5+2 row types A, B, AB and C and the 8+2 row types D, E and DE. All male and female connectors are available with press-in terminations.

The high current har-bus® HM Power connector complies with the OBSAI specification V1.1. This very compact connector can be loaded with up to four contacts, each contact carrying up to 23 A at 70 °C (in OBSAI configuration). The connector is offered in four lengths to allow hot swapping. The right-angled male connectors are available for press-in and for PiHIR soldering.

Accessories and press-in tooling are available for all connectors.



Specific features of the product range


COMBINED STYLE FOR CompactPCI:

Additional to the standard insulator types according to the specification there is a Monoblock available, especially for CompactPCI applications. It unites the type A and the type B_{22} in one connector. With the Monoblock, only one connector is necessary for a standard configuration of a 3U module card which offers a cost advantage in the production process and logistics.

"NEEDLE-EYE" PRESS-IN TECHNOLOGY:

The *har-bus*[®]*HM* press-in zone is based on the industry renowned needle-eye technology. Its special design allows for compensation of tolerances of pcb surface properties (e.g. superfluous tin plating). The excessive material is displaced within the plated through hole, whereby a gas-tight and corrosion resistant electrical connection is assured.

INTERNATIONAL STANDARD:

The *har-bus® HM* connectors are designed to meet the PICMG 2.x specification and can be used in CompactPCI. CompactPCI is a common standard e.g. for industrial computers.

harbu.	s [®] HM

Design according	: IEC 61076-4-101
Approvals	
Underwriters	
Laboratories Inc.®	: c Rus with their respective ratings documented in file E 102079
Number of contacts	: 55 – 220 signal (77 – 308 fully shielded); or customised
Contact spacing	: 2.00 mm
Working current	: 1 A @ 70 °C (80 % derating)
Test voltage U _{r.m.s.}	: AC 750 V min.
Contact resistance	: 20 mΩ max.
Insulation resistance	: 10 GΩ min.
Temperature range	: -55 °C +125 °C
Durability as per	: Performance level 2 = 250 mating cycles in total.
IEC 61076-4-101	<i>First 125 mating cycles</i> , then 4 days gas test using 0.5 ppm SO ₂ and 0.1 ppm H ₂ S (at 25 ± 2 °C and 75 ± 3 % humidity). Measurement of contact resistance.
	The <i>remaining 125 mating cycles</i> are subject to measurement of contact resistance and visual inspection. No abrasion of the contact finish throut to the base material. No functional impairment.
	Performance level 1 = 500 mating cycles in total.
	<i>First 250 mating cycles</i> , then 10 days gas test using 0.5 ppm SO ₂ and 0.1 ppm H ₂ S (at 25 ± 2 °C and 75 ± 3 % humidity). Measurement of contact resistance.
	The <i>remaining 250 mating cycles</i> are subject to measurement of contact resistance and visual inspection. No abrasion of the contact finish throut to the base material. No functional impairment.
Termination technique	: compliant press-in
Mating force	: 0.75 N/pin max.
Withdrawal force	: 0.15 N/pin min.
Materials	
Mouldings	: Thermoplastic resin, glass-fibre filled, UL 94-V0
Contacts	: Copper alloy
Contact surface Contact zone male Contact zone female	: Au/PdNi/Ni, contacts are treated with Bellcore recommended lubricant (PPE : Au/Ni, contacts are treated with Bellore recommended lubricant (PPE)
Press-in zone	: Ni

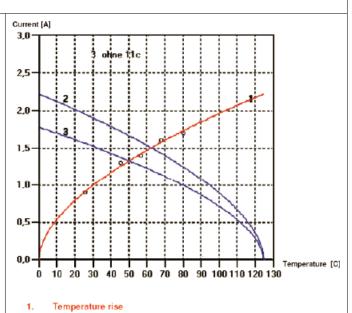
HARTING

Due to the high deformation capability and resilience of **harbus**[®]**HM** press-in contacts, they can be easily and repeatedly removed in case of repairs without impairment to their functioning.

harbus[®] **HM** press-in contacts are extremely versatile and offer a reliable electrical contact, therefore they are especially well suited for applications with these surfaces.

Please contact us for detailed test reports.

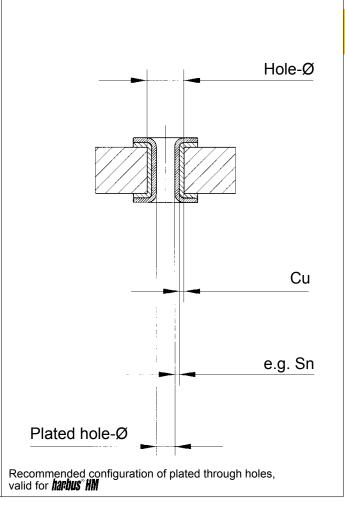
Benefits of press-in technology


- Thermal shocks associated with the soldering process and the risk of the board malfunction are avoided.
- No need for the subsequent cleaning of the assembled pcb's
- Unlimited and efficient processing of partially goldplated pins for rear I/O - manual soldering is no longer necessary!

Recommended configuration of plated through holes

The press-in zone of the **harbus HM** connectors is approved to be used with a plated through hole according EN 60352-5 with a diameter of $0.60^{\pm 0.05}$ mm (drilled hole $0.7^{\pm 0.02}$ mm).

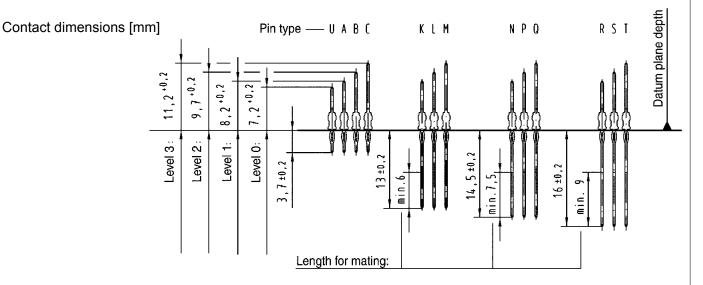
Based on our experiences regarding the production process of the PCB manufacturer, we recommend a plated through hole configuration like shown in the below spreadsheet. To achieve the recommended plated through hole diameter, it is important to specify especially the drilled hole diameter of 0.7 ± 0.02 mm to your PCB supplier.


Tin plated	Hole-Ø	0.7 ^{±0.02} mm	
PCB (HAL)	Cu	min. 25 µm	
	Sn	max. 15 µm	
	Plated hole-Ø	0.60-0.65 mm	
Chemical	Hole-Ø	0.7 ^{±0.02} mm	
tin plated PCB	Cu	min. 25 µm	
	Sn	min. 0.8 µm	
	Plated hole-Ø	0.60-0.65 mm	
Au / Ni plated PCB	Hole-Ø	0.7 ^{±0.02} mm	
·	Cu	min. 25 µm	
	Ni	3-7 µm	
	Au	0.05-0.12 µm	
	Plated hole-Ø	0.60-0.65 mm	
Silver plated PCB	Hole-Ø	0.7 ^{±0.02} mm	
	Cu	min. 25 µm	
	Ag	0.1-0.3 µm	
	Plated hole-Ø	0.60-0.65 mm	
OSP	Hole-Ø	0.7 ^{±0.02} mm	
copper plated PCB	Cu	min. 25 µm	
	Plated hole-Ø	0.60-0.65 mm	

2. Derating

3. Derating at I max * 0.8 according to DIN IEC 512

Derating curve



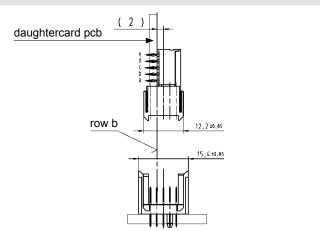
HARTING offers 13 contact lengths for *harbus*[®]*HM* male connectors: the standard mating length of 8.2 mm, pre-leading contacts with 9.7 mm and extra long contacts preferred for shielding with 11.2 mm mating length.

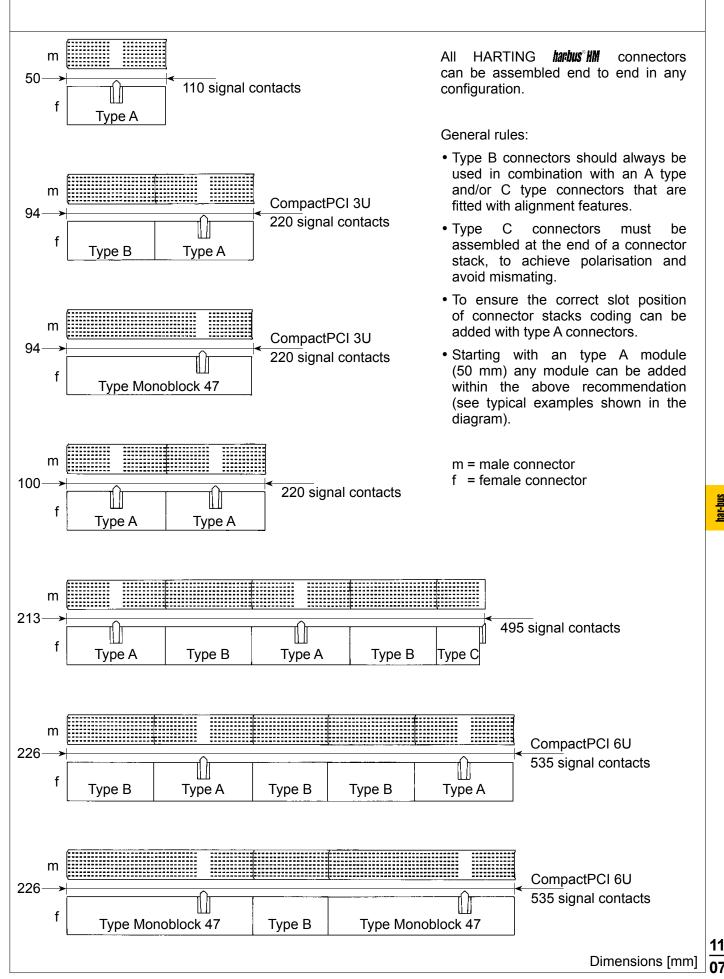
On the termination side the standard length is 3.7 mm. With the three termination lengths of 13.0, 14.5 and 16.0 mm even for rear I/O applications different mating levels are possible, depending on the pcb thickness and shroud height. For the standard termination length, an extra short contact for special applications with a mating length of 7.2 mm is available.

The different contact lengths are designated with letters to identify them in the configurations. For special loadings please use the customer request form at the end of this chapter.

All contacts are offered with press-in termination 'eye of the needle'. In accordance with the application they can be delivered in performance level 1 or 2.

har-bus HM


Circuit density

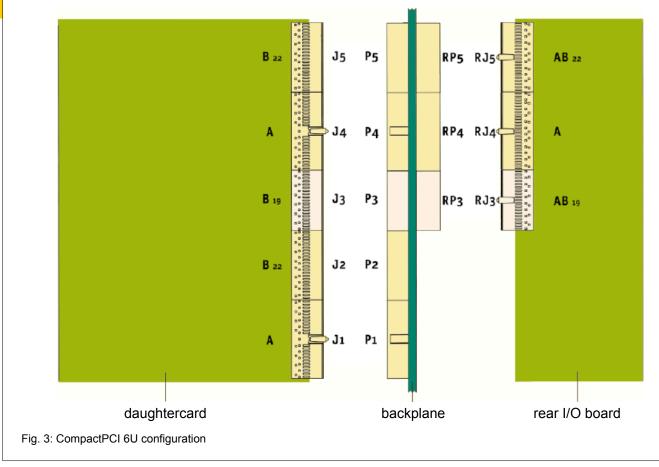

When using the specified diameter of the finished through hole according to IEC 61 076-4-101 $(0.6 \pm 0.05 \text{ mm})$ with an appropriate annular ring, the remaining distance between the rings is about 1 mm. Under the condition that the width of the track and the space between should be equal, two tracks of 0.2 mm width or three tracks of 0.14 mm width can be placed between two rings. Typical designs are shown in the drawing on the right side.

Alignment of male and female connector

For the alignment of male and female connector, a common reference plane is defined. This reference plane is the top side of the daughtercard pcb and the contact rows "b" of the female and the male connector (see drawing).

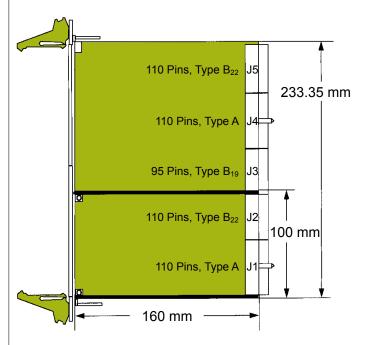
Improved guiding with AB-modules:

In accordance with the equipment practice each front side arrangement of *harbus HM* connectors shall have at least one A-module per slot to ensure that the connector can accommodate ± 2 mm alignment tolerances in rack systems.


On some rear I/O arrangements the A-module's alignment capability cannot be utilised, because only B-modules are used for feed through. Consequently AB-modules were introduced to ensure guiding capabilities where formerly only B-modules were used. Those AB-modules represent a combination of A- and B-modules and are specified in **CompactPCI by PICMG 2.0 Rev. 3.0** for certain rear I/O applications.

The AB-modules have guiding pegs similar (but not mating compatible to prevent mismating) to those

of the A-module providing the same proven mating tolerances of ± 2 mm. The AB-modules have no coding center but are fully equiped with contacts in order to maintain the full density as per the B-modules.


The **AB-female** connector mates either with an **AB-shroud** or with **AB-male** connectors. The centered pin positions of the shielding rows of male connectors are simply equipped with short spill contacts (if standard connector and shroud are used). This prevents that the guiding peg of the female AB-module stubbing on the feed through contacts of the front side's fixed connector. These fixed connector loadings are called **AB-friendly**.

The AB-male connector will not be equiped with shielded contacts in the centre where the guiding peg will engage.


CompactPCI® as a standard is maintained and enhanced by the PCI Industrial Computer Manufacturers Group (PICMG[®]). It defines a combination of the electrical and logical specifications of the PCI standard and the mechanical specifications of the IEEE 1101 and IEC 60297 series of standards. The board connector has been developed from the IEC 61076-4-101 series of 2.0 mm connectors. The mounting location and dimensions for the 2.0 mm connectors are specified in IEEE 1101.11. Some additional mechanical definitions for 2.0 mm connectors in the Eurocard format are being specified in the VITA 30 draft.

Other international standards are listed in the CompactPCI® standard for environmental and

related specifications. This gives *CompactPCI®* a solid foundation of international standards and practices for mechanical robustness.

The board format is either a 3U or a 6U Eurocard as defined in IEC 60297. There are two or five connectors specified for 3U or 6U boards respectively. Connectors are numbered from J1/P1 through J5/P5 (bottom to top) on the board or backplane. Slave or peripheral boards need J1/P1 as a minimum, master or system boards need both J1/P1 and J2/P2 as a minimum. Backplanes should always have the full complement of

to the CPCI standard (pins numbered from bottom to top), the contact numbers on the connector are numbered from top to bottom (according to the IEC standard).

The front panel of CPCI cards may be equipped with additional keying pegs to code individual board types. There is also an extended pin length to remove any electro static charge before contacts on the rear connnectors mate.

This pin also functions as a mechanical guide to position the board as straight as possible for insertion. This prevents pin bending and lowers the insertion force.

Some applications could require up to 500 pins to be pushed into sockets simultaneously.

Connectors for high availability applications (hot swap) come with 3 different lengths of pins for a staged sequence of mate or break of contact.

Connector J1/P1 carries the signals for a 32 bit PCI bus (see table of contact assignments for J1/P1). Connector J2/P2 on a system card has the additional signals for a 64 bit PCI bus and some user-defined I/O (see table of contact assignments for J2/P2). On slave cards all of J2/P2 might be user-defined I/O except the top row which carries the signals for geographical addressing. J3/P3 should be reserved for other system bus definitions. J4/ P4 and J5/P5 are used for I/O or secondary buses, e.g. H.110 in telecom applications or for bridges into other buses like VMEbus.

This is used to accommodate two bus platforms in one card cage on one backplane.

Contact assignment on *CompactPCI®* system position (J1/P1)

Contact assignment on *CompactPCI®* system position (J2/P2)

	а	b	C	d	e	
25	+5 V	REQ64#	ENUM#	+3,3 V	+5 V	25
24	AD[1]	+5 V	V(I/O)	AD[0]	ACK64#	24
23	+3,3 V	AD[4]	AD[3]	+5 V	AD[2]	23
22	AD[7]	GND	+3,3 V	AD[6]	AD[5]	22
21	+3,3 V	AD[9]	AD[8]	M66EN	C/BE[0]#	21
20	AD[12]	GND	V(I/O)	AD[11]	AD[10]	20
19	+3,3 V	AD[15]	AD[14]	GND	AD[13]	19
18	SERR#	GND	+3,3 V	PAR	C/BE[1]#	18
17	+3,3 V	SDONE	SBO#	GND	PERR#	17
16	DEVSEL#	GND	V(I/O)	STOP#	LOCK#	16
15	+3,3 V	FRAME#	IRDY#	GND	TRDY#	15
14						14
13			Key Area			13
12						12
11	AD[18]	AD[17]	AD[16]	GND	C/BE[2]#	11
10	AD[21]	GND	+3,3 V	AD[20]	AD[19]	10
9	C/BE[3]#	IDSEL	AD[23]	GND	AD[22]	9
8	AD[26]	GND	V(I/O)	AD[25]	AD[24]	8
7	AD[30]	AD[29]	AD[28]	GND	AD[27]	7
6	REQ#	GND	+3,3 V	CLK	AD[31]	6
5	Bus Reserved	Bus Reserved	RST#	GND	GNT#	5
4	Bus Reserved	GND	V(I/O)	INTP	INTS	4
3	INTA#	INTB#	INTC#	+5 V	INTD#	3
2	тск	+5 V	TMS	TDO	TDI	2
1	+5 V	-12 V	TRST#	+12 V	+5 V	1
	a	Ь	c	d	e	

	а	b	C	d	e	
22	GA4	GA3	GA2	GA1	GA0	22
21	CLK6	GND	Reserved	Reserved	Reserved	21
20	CLK5	GND	Reserved	GND	Reserved	20
19	GND	GND	Reserved	Reserved	Reserved	19
18	Bus Reserved	Bus Reserved	Bus Reserved	GND	Bus Reserved	18
17	Bus Reserved	GND	PRST#	REQ6#	GNT6#	17
16	Bus Reserved	Bus Reserved	DEG#	GND	Bus Reserved	16
15	Bus Reserved	GND	FAL#	REQ5#	GNT5#	15
14	AD[35]	AD[34]	AD[33]	GND	AD[32]	14
13	AD[38]	GND	V(I/O)	AD[37]	AD[36]	13
12	AD[42]	AD[41]	AD[40]	GND	AD[39]	12
11	AD[45]	GND	V(I/O)	AD[44]	AD[43]	11
10	AD[49]	AD[48]	AD[47]	GND	AD[46]	10
9	AD[52]	GND	V(I/O)	AD[51]	AD[50]	9
8	AD[56]	AD[55]	AD[54]	GND	AD[53]	8
7	AD[59]	GND	V(I/O)	AD[58]	AD[57]	7
6	AD[63]	AD[62]	AD[61]	GND	AD[60]	6
5	C/BE[5]#	GND	V(I/O)	C/BE[4]#	PAR64	5
4	V(I/O)	Bus Reserved	C/BE[7]#	GND	C/BE[6]#	4
3	CLK4	GND	GNT3#	REQ4#	GNT4#	3
2	CLK2	CLK3	SYSEN#	GNT2#	REQ3#	2
1	CLK1	GND	REQ1#	GNT1#	REQ2#	1
	a	b	c	d	e	

In mechanical terms J1/P1 is a 25x5 matrix of contacts. Three rows of 5 contacts (rows 12 - 14) are not used for electrical contacts. Instead, plastic keys of different orientation and configuration are used to key board locations as to system or peripheral slot, voltage options, etc.

J2/P2 is a shortened connector with only 22 rows of contacts instead of 25 rows for a standard size. HARTING now offers monolithic versions with J1/P1 and J2/P2 combined in one single connector.

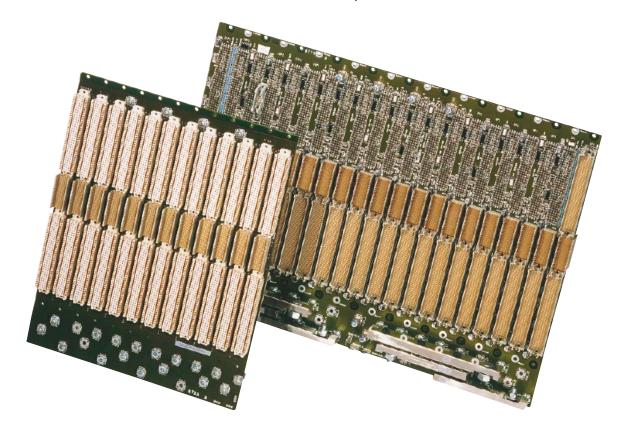
This combination together with some space left on the card to fit into guide rails makes maximum use of the 100 mm rear edge of the 3U Eurocard.

On a 6U card this connector setup is repeated on J4/P4 and J5/P5.

The J3/P3 connector is a shortened version of the 2.0 mm connector with 19 rows of 5 signal contacts.

The size results from the height of a 6U board (233 mm) which is more than double the height of a 3U board.

All connectors used for *CompactPCI®* are based on a 7 column pitch. The inner 5 columns are used for logic signals and power. The outer columns on either side are reserved for shielding or ground.



lar-bus HM

> <u>11</u> 10

The VMEbus has evolved over a period of more than 25 years to become the leading bus architecture in open industrial applications. The specification is an ANSI norm, the original specification has been extended to become a draft standard VME64x ANSI/VITA 1.1-1997. This draft standard includes the specification for the 5-row DIN compatible connector (IEC 61076-4-113) and for a centre connector J0/P0 on 6U VME cards, which is identical to J3/P3 in *CompactPCI*[®] systems.

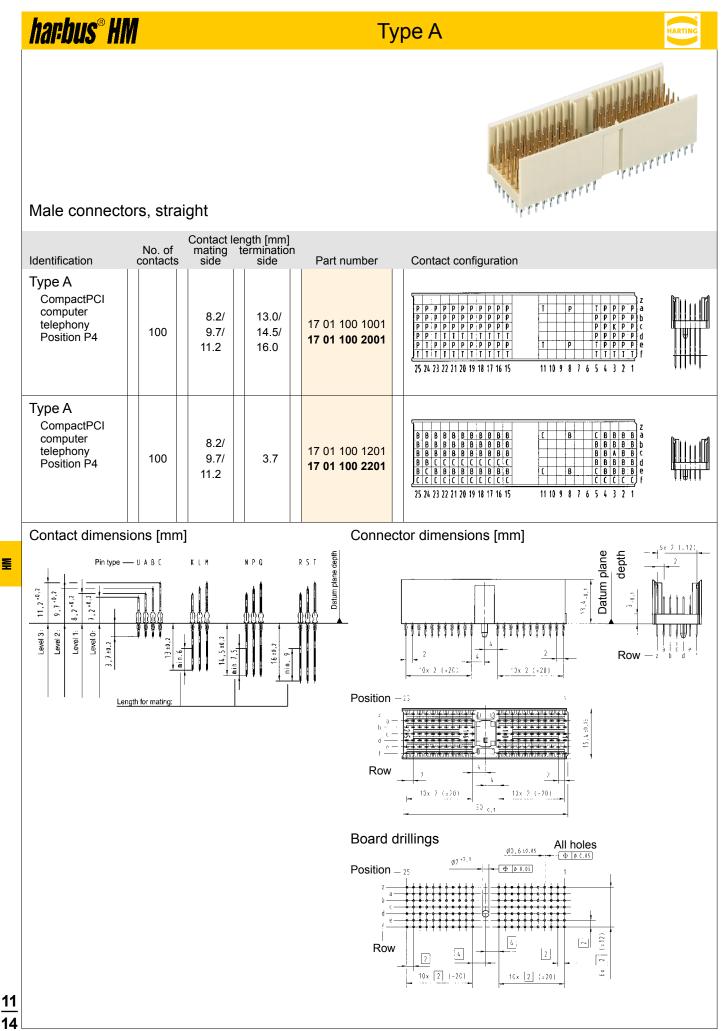
In VMEbus systems it is possible to use custom connectors in the J0/P0 area (e.g. coax connectors). To prevent problems with non-mating backplanes it is strongly recommended to use front panel keying. The IEEE 1101 documents J0/P0 can also be used with rear transition modules for pluggable I/O cabling. As mentioned above, the contacts on this connector may be bussed. One example is the ATM CellBus, which is in the process of being standardised. The bus on J0/P0 connectors might actually be a plug-on mezzanine backplane rather than conducting traces integrated into the backplane itself.

The 2.0 mm J0/P0 connector in VME64x systems is used for additional I/O, for new high speed sub busses or I/O for mezzanine modules, e.g. IP modules on VMEbus boards. The connector is placed on the Eurocard to work in combination with the non-metric original VMEbus connectors DIN 41612 type C or the newer 5-row connector har-bus® 64. The mounting location and dimensions for the J0/P0 VMEbus connector (IEC 61076-4-101) is specified in IEEE 1101.11. The VMEbus 2.0 mm connector uses 5 columns of signal contacts and optional two additional outer columns on either side for shielding. All 95 signal contacts are user defined.

har:bus® H	IM			Ту	ире А	HARTING
Male connec	ctors, strai	ght			Nortrererer	ITTTTTTTTTTT
Identification	No. of contacts	Contact le mating side	ngth [mm] termination side	Part number	Contact configuration	
Туре А	110	8.2	3.7	17 01 110 1201 17 01 110 2201	A A	A A A C A A A d A A A A e f
Туре А	132	8.2/ 11.2	3.7	17 01 132 1203 17 01 132 2203	A A	$\begin{array}{c c} A & A & A \\ \hline C & C & C \\ \hline \end{array}$
Туре А	132	8.2/ 11.2	3.7/ 13.0/ 16.0	17 01 132 1007 17 01 132 2007	K K	$\begin{array}{c c} A & A & A \\ \hline C & C & C \\ \hline \end{array} $
Туре А	154	8.2/ 11.2	3.7	17 01 154 1201 17 01 154 2201	C C	
Туре А	110	9.7	3.7	17 01 110 1204 17 01 110 2204	B B	B B B C B B B C B B B C B B B C J J J J J J
Туре А	154	9.7/ 11.2	3.7	17 01 154 1205 17 01 154 2205	C C	B B

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 11.14

har-bus


Type A

HARTING

Male connectors, straight

Identification	No. of contacts	Contact le mating side	ngth [mm] terminatior side	Part number	Contact configuration
Туре А	110	8.2	13.0	17 01 110 1402 17 01 110 2402	K K
Туре А	154	9.7/ 11.2	14.5/ 16.0	17 01 154 1001 17 01 154 2001	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Type A CompactPCI Position P1	154	8.2/ 9.7/ 11.2	3.7	17 01 154 1203 17 01 154 2203	C C
Type A CompactPCI Position P4	154	9.7/ 11.2	16.0	17 01 154 1604 17 01 154 2604	I I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<>
Type A CompactPCI Position P4	154	8.2/ 9.7/ 11.2	16.0	17 01 154 1603 17 01 154 2603	I I
Type A CompactPCI hot swap Position P1	154	8.2/ 9.7/ 11.2	3.7	17 01 154 1204 17 01 154 2204	C C

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2

Туре В

HARTING

Male connectors, straight

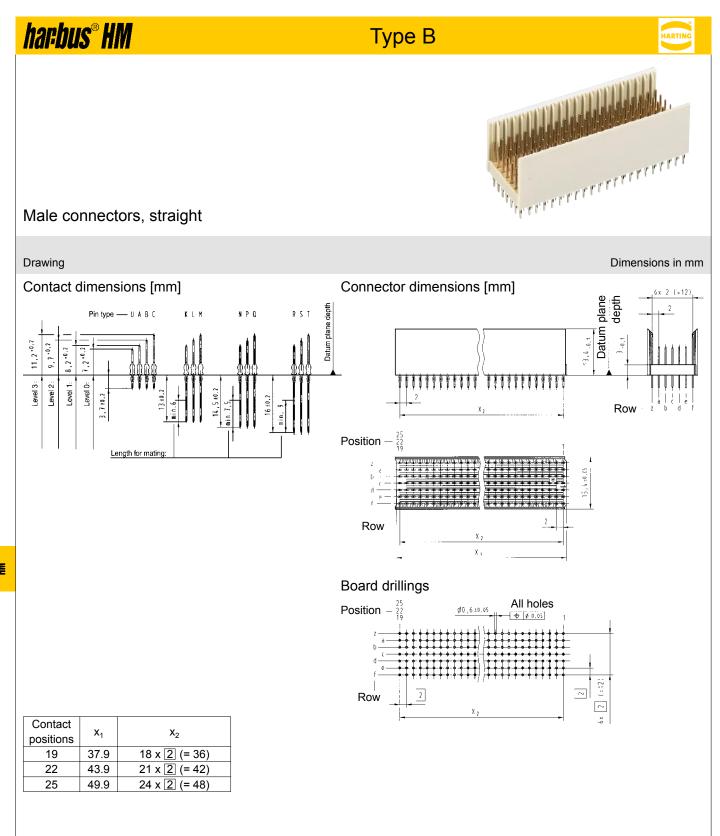
Identification	No. of contacts	Contact le mating side	ength [mm] termination side	Part number	Contact configuration	
Type B ₂₅	125	8.2	3.7	17 02 125 1201 17 02 125 2201	A A	
Type B ₂₅	150	8.2/ 11.2	3.7	17 02 150 1201 17 02 150 2201	A A	
Type B ₂₅	175	8.2/ 11.2	3.7	17 02 175 1201 17 02 175 2201	C C	
Type B ₂₅	125	9.7/ 11.2	3.7	17 02 125 1205 17 02 125 2205	B B	
Type B ₂₅	175	8.2/ 9.7/ 11.2	3.7	17 02 175 1202 17 02 175 2202	C C	
Type B ₂₅	175	8.2/ 11.2	13.0/ 16.0	17 02 175 1006 17 02 175 2006	T T	

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 11.18

harbus [®] H	M			Ту	pe B
Male connec	tors, stra	ight			
	No. of	Contact le	ngth [mm]		
Identification	contacts	mating side	termination side	Part number	Contact configuration
Type B ₂₂	110	8.2	3.7	17 04 110 1201 17 04 110 2201	A A
Type B ₂₂	154	8.2/ 11.2	3.7	17 04 154 1201 17 04 154 2201	C C
Type B ₂₂ CompactPCI Position P2	154	9.7/ 11.2	3.7	17 04 154 1203 17 04 154 2203	C C
Type B ₂₂ CompactPCI computer telephony	132	8.2/ 9.7/ 11.2	13.0/ 14.5/ 16.0	17 04 132 1001 17 04 132 2001	P P P K
Type B ₂₂ CompactPCI AB friendly	154	9.7/ 11.2	3.7/ 16.0	17 04 154 1010 17 04 154 2010	T T
Type B ₂₂ CompactPCI AB friendly	154	9.7/ 11.2	3.7/ 14.5/ 16.0	17 04 154 1002 17 04 154 2002	I T

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 11.18

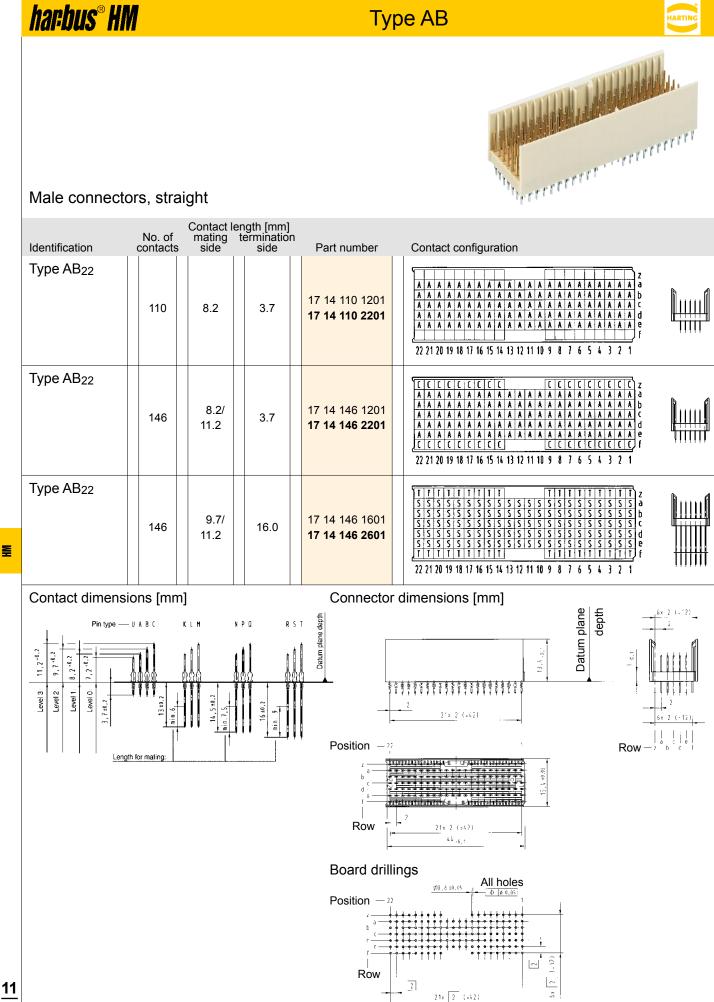
Type B


HARTING

Male connectors, straight

Identification	No. of contacts	Contact le mating side	ngth [mm] termination side	Part number	Contact configuration
Type B ₁₉ VME Position J0	95	8.2	3.7	17 05 095 1201 17 05 095 2201	A A
Type B ₁₉ VME Position J0	133	8.2/ 11.2	3.7	17 05 133 1201 17 05 133 2201	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Type B ₁₉ VME Position J0	133	9.7/ 11.2	3.7	17 05 133 1203 17 05 133 2203	C C
Type B ₁₉ VME Position J0	95	8.2	13.0	17 05 095 1401 17 05 095 2401	K K
Type B ₁₉ CompactPCI AB friendly Position P3	133	9.7/ 11.2	3.7/ 16.0	17 05 133 1005 17 05 133 2005	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Type B ₁₉ Compact PCI Position P3 VME Position J0	133	8.2/ 11.2	16.0	17 05 133 1602 17 05 133 2602	T T

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 11.18 lar-bus HM


Type AB

HARTING

Male connectors, straight

Identification	No. of contacts	Contact le mating side	ngth [mm] termination side	Part number	Contact configuration	
Type AB ₂₅	125	8.2	3.7	17 15 125 1201 17 15 125 2201	A A	
Type AB ₂₅	169	8.2/ 11.2	3.7	17 15 169 1201 17 15 169 2201	C C	
Type AB ₂₅	169	8.2/ 11.2	13.0/ 16.0	17 15 169 1003 17 15 169 2003	T T	
	_	-	PQ RS	4	dimensions [mm]	
Level 3: 11, 2 ^{-0, 2} Level 2: 9, 7 ^{-0, 2} Level 1: 8, 2 ^{-0, 2} Level 0: 7, 2 ^{-0, 2}	13±0.2	N, 5 10.2	16 ±0.2			
<u>Ler</u>	igth for mating:	[†	· · · · · · · · · · · · · · · · · · ·	ຳມ ວັດ ເ ເ ເ ເ	$\frac{1}{2}$ $\frac{2}{24x \ 2 \ (z,\xi)}$ $\frac{1}{50} \cdot \frac{1}{0,1}$ $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$	
				Board drilli Position - 25 2 4 5 5 5 6 6 6 6 7 4 7 6 7 4 7 7 7 4 7 7 7 7 7 7	ngs All holes 33, 6.10, 55 All holes 33, 6.10, 55 33, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	

Thin print part numbers: performance level 1

20

Type AB

HARTING

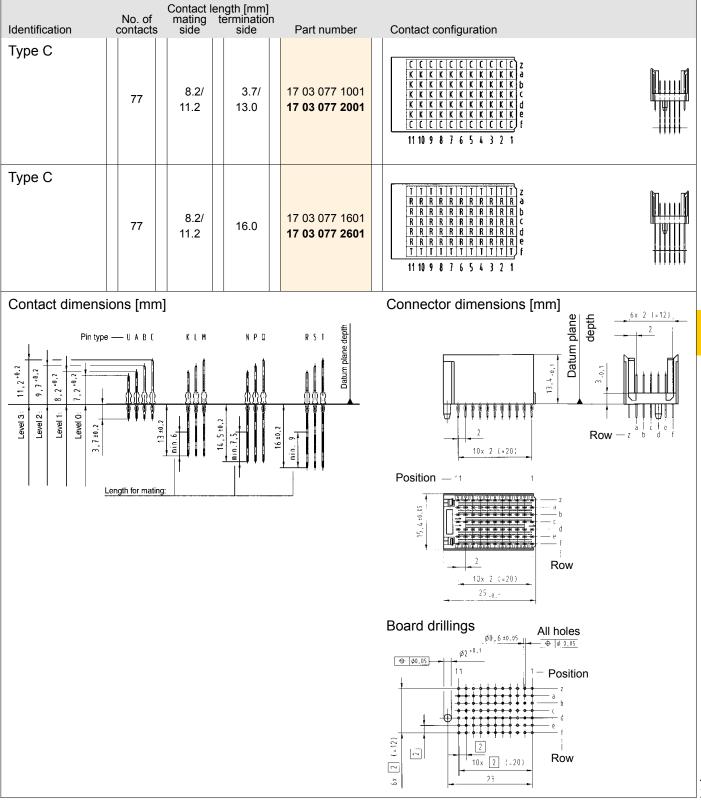
Male connectors, straight

Identification	No. of contacts	Contact le mating side	ngth [mm] termination side	Part number	Contact configuration			
Type AB ₁₉	95	8.2	3.7	17 13 095 1201 17 13 095 2201	A A			
Type AB ₁₉	127	8.2/ 11.2	3.7	17 13 127 1201 17 13 127 2201	C C			
Type AB ₁₉	127	9.7/ 11.2	16.0	17 13 127 1601 17 13 127 2601	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
Contact dimens					nnector dimensions [mm]			
Level 2: 9, 1, 1, 2, 0, 2 Level 2: 9, 1, 1, 2, 0, 2 Level 1: 8, 2, 0, 2 Level 1: 8, 2, 0, 2 1, 2,								
Position -19 $z \rightarrow z \rightarrow$								
Board drillings Position -13								

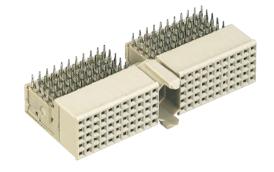
harbus [®] H	M			Ту	/pe C	HARTING
Male connec	tors, stra	ight				THE PEPPPPP
Identification	No. of contacts	Contact le mating side	ngth [mm] termination side	Part number	Contact configuration	
Туре С	55	8.2	3.7	17 03 055 1201 17 03 055 2201	A A	
Туре С	77	8.2/ 11.2	3.7	17 03 077 1201 17 03 077 2201	C C	
Туре С	55	9.7	3.7	17 03 055 1202 17 03 055 2202	B B	
Туре С	77	9.7/ 11.2	3.7	17 03 077 1202 17 03 077 2202	C C	
Туре С	55	8.2	13.0	17 03 055 1401 17 03 055 2401	K K	
Туре С	66	8.2/ 11.2	13.0/ 16.0	17 03 066 1001 17 03 066 2001	K K	

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 11.23

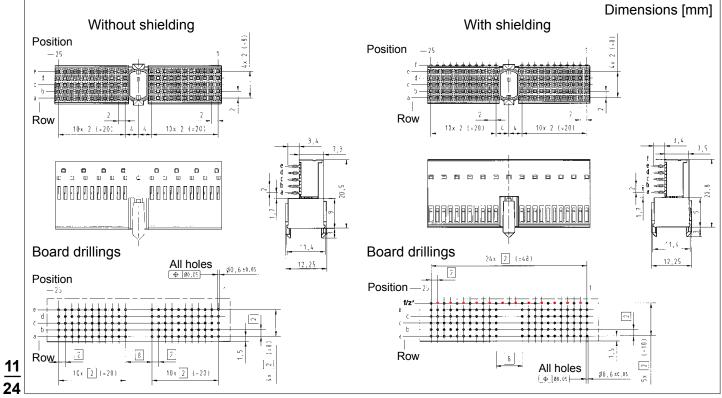
har-bus um



Type C



Male connectors, straight


harbus[®] HM

Type A

Female connectors, angled

Identification	No. of contacts	Contact length [mm termination side] Part number	
Туре А	110	3.4	17 21 110 1101 17 21 110 2101	
Type A with upper shield CompactPCI Positions J1, J4	110	3.4	17 21 110 1102 17 21 110 2102	
Lower shield for type A connectors			17 21 000 4102	
Type A with split upper shield CompactPCI computer telephony Position J4	90	3.4	17 21 090 1103 17 21 090 2103	
Lower shield for type A connectors (rows 1 – 5) CompactPCI computer telephony			17 29 000 4102	
Lower shield for type A connectors (rows 15 – 25) CompactPCI computer telephony			17 23 000 4102	

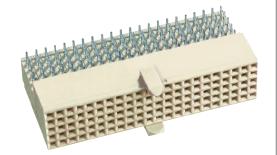
Thin print part numbers: performance level 1 Bold print part numbers: performance level 2

* hole on even contact numbers only needed for lower shielding

Туре В

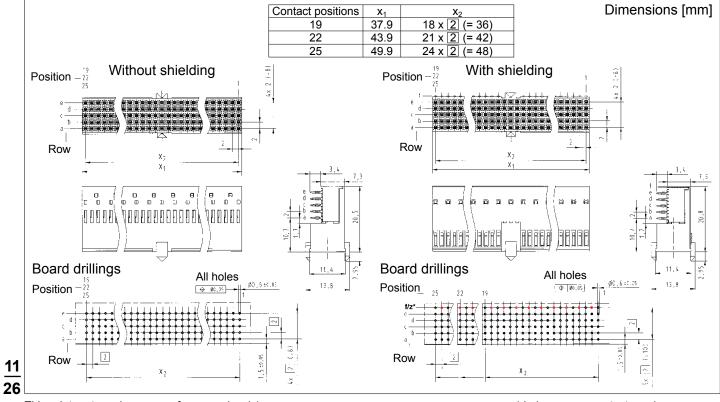
Female connectors, angled

Identification	No. of contacts	Contact length [mm] termination side	Part number
Type B ₁₉ VME, Position P0	95	3.4	17 25 095 1101 17 25 095 2101
Type B ₁₉ with upper shield CompactPCI, Position J3 – VME, Position P0	95	3.4	17 25 095 1102 17 25 095 2102
Lower shield for type B ₁₉ connectors			17 25 000 4102
Type B ₂₂	110	3.4	17 24 110 1101 17 24 110 2101
Type B ₂₂ with upper shield CompactPCI, Positions J2, J5	110	3.4	17 24 110 1102 17 24 110 2102
Lower shield for type B ₂₂ connectors			17 24 000 4102
Type B ₂₅	125	3.4	17 22 125 1101 17 22 125 2101
Type B ₂₅ with upper shield	125	3.4	17 22 125 1102 17 22 125 2102
Lower shield for type B ₂₅ connectors			17 22 000 4102
Contact positions 19 22 25	x ₁ 37.9 43.9 49.9	$ \begin{array}{r} x_2 \\ 18 \times 2 (= 36) \\ 21 \times 2 (= 42) \\ 24 \times 2 (= 48) \end{array} $	Dimensions [mm
Without shielding Position $-\frac{22}{25}$ Row $\frac{x_2}{x_1}$ $\frac{x_2}{x_2}$ 	Position		


Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 * hole on even contact numbers only needed for lower shielding

<u>11</u> 25

HARTIN


Type AB

HARTING

Female connectors, angled

Identification	No. of contacts	Contact length [mm] termination side	Part number
Type AB ₁₉	95	3.4	17 33 095 1101 17 33 095 2101
Type AB ₁₉ with upper shield CompactPCI, Position RJ3	95	3.4	17 33 095 1102 17 33 095 2102
Lower shield for type AB ₁₉ connectors			17 33 000 4102
Type AB ₂₂	110	3.4	17 34 110 1101 17 34 110 2101
Type AB ₂₂ with upper shield CompactPCI, Positions RJ2, RJ5	110	3.4	17 34 110 1102 17 34 110 2102
Lower shield for type AB ₂₂ connectors			17 34 000 4102
Type AB ₂₅	125	3.4	17 35 125 1101 17 35 125 2101
Type AB ₂₅ with upper shield	125	3.4	17 35 125 1102 17 35 125 2102
Lower shield for type AB ₂₅ connectors			17 21 000 4102

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 * hole on even contact numbers only needed for lower shielding

Type C

Female connectors, angled

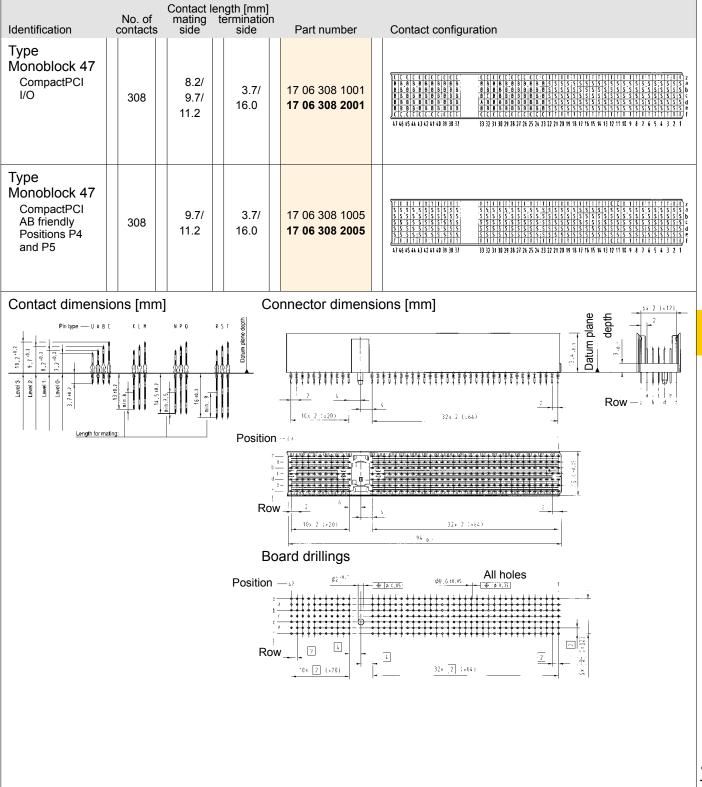
Identification	No. of Contact length [mm] contacts termination side Part number
Туре С	55 3.4 17 23 055 1101 17 23 055 2101
Type C with upper shield	55 3.4 17 23 055 1102 17 23 055 2102
Lower shield for type C connectors	17 23 000 4102
Without shielding	With shielding Dimensions [mm]
Position -11 $e^{\frac{0}{0}, 6 \pm 0, 35}$ $e^{\frac{1}{0}, 6 \pm 0, 35}$	Position -11 $\frac{12.25}{10x}$ Row $\frac{12}{10x}$ $\frac{12}{(20)}$

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 <u>11</u> 27

Type Monoblock 47

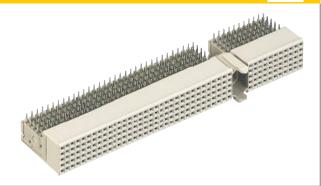
Male connectors, straight

	Identification	No. of contacts	Contact I mating side	ength [mm] termination side	Part number	Contact configuration
	Type Monoblock 47	220	8.2	3.7	17 06 220 1201 17 06 220 2201	1 1
	Type Monoblock 47	308	8.2/ 11.2	3.7	17 06 308 1201 17 06 308 2201	YEIEGECECECECECE IEEEGECECECECECECECECECECECECECECECECECE
	Type Monoblock 47	220	9.7	3.7	17 06 220 1202 17 06 220 2202	B B
	Type Monoblock 47 CompactPCI Positions P1 and P2	308	8.2/ 9.7/ 11.2	3.7	17 06 308 1202 17 06 308 2202	Image: Control of the state of the
	Type Monoblock 47 CompactPCI hot swap	308	8.2/ 9.7/ 11.2	3.7	17 06 308 1203 17 06 308 2203	C.C.I.T.C.I.C.C.I.C.I.C.I.C.I.C.I.C.I.C.
<u>1</u>	Type Monoblock 47 CompactPCI computer telephony	232	8.2/ 9.7/ 11.2	3.7	17 06 232 1201 17 06 232 2201	B (5) B (5) B (6) B (6) B (6) B (6) B (6) B (6) C (7) C (7) <thc (7)<="" th=""> <thc< td=""></thc<></thc>

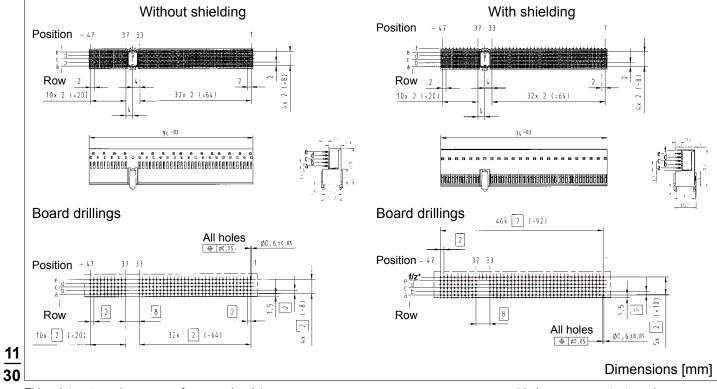

<u>11</u> 28

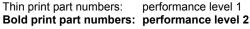
> Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 11.29

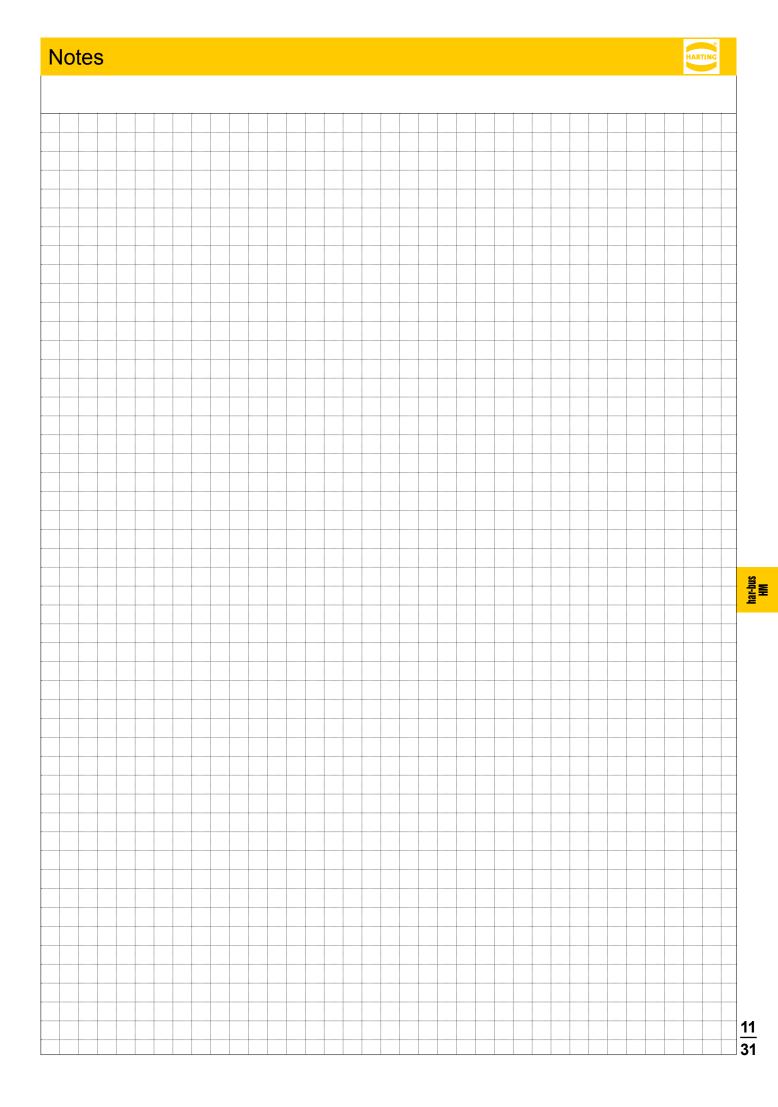
Type Monoblock 47

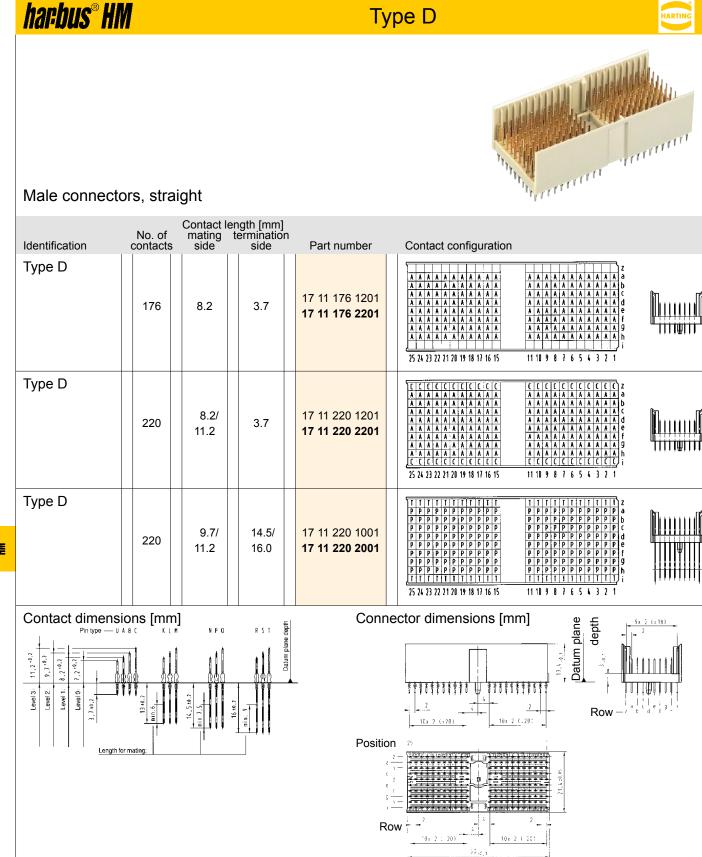

Male connectors, straight

lar-bus HM


Type Monoblock 47


HARTIN


Female connectors, angled


Identification		No. of contacts	Contact length [mm termination side] Part number				
Type Monoblock 47	Type Monoblock 47 220 3.4							
Type Monoblock 47 with upper shield	17 26 220 1102 17 26 220 2102							
Type Monoblock 47 with upper shield CompactPCI computer telephony	17 26 200 1103 17 26 200 2103							
Lower shield for type Monoblock 47 connectors	17 26 000 4102							
Lower shield for type Monoblock 47 connectors (rows 1 – 22) CompactPCI computer telephony		17 24 000 4102						
Lower shield for type Monoblock 47 connectors (rows 23 – 27) CompactPCI computer telephony	17 29 000 4102							
Lower shield for type Monoblock 47 connectors (rows 37 – 47) CompactPCI computer telephony	17 23 000 4102							

* hole on even contact numbers only needed for lower shielding

Board drillings

Row

Position - 25

All holes

= 18.5

5.4

+ ø : . 05

ØÛ,6 ≈0.05

4

2

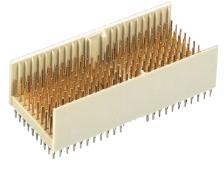
 $3x \begin{bmatrix} 2 \\ -20 \end{bmatrix}$ (=20)

\$2.10.1

á.

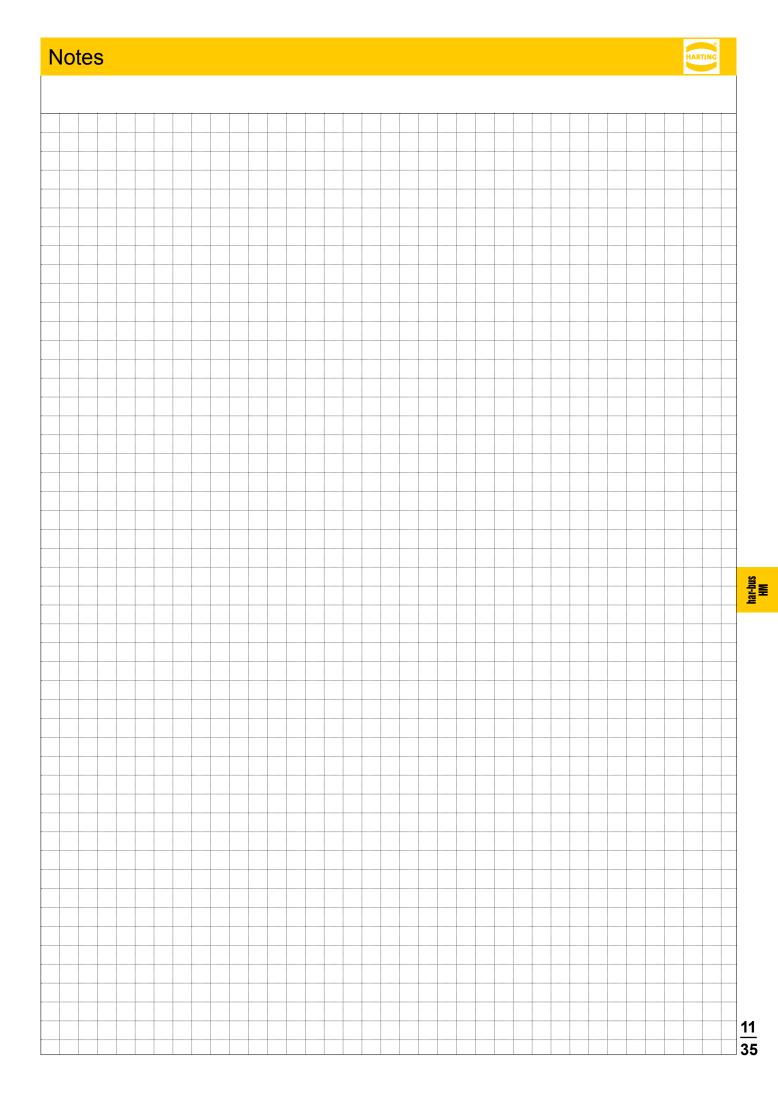
2 10x 2 (-20) φ

Type E

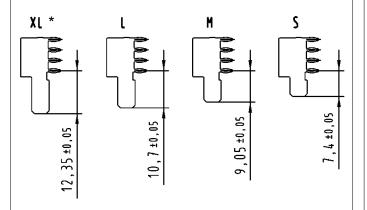

HARTING

Male connectors, straight

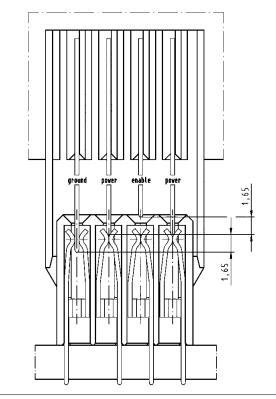
Identification	No. of contacts	Contact le mating side	ngth [mm] termination side	Part number	Contact configuration				
Туре Е	200	8.2	3.7	17 12 200 1201 17 12 200 2201	A A	1			
Туре Е	250	8.2/ 11.2	3.7	17 12 250 1201 17 12 250 2201	C C	1			
Туре Е	250	9.7/ 11.2	14.5/ 16.0	17 12 250 1001 17 12 250 2001	I T				
Contact dimens			R S T 🛱	Conn	ector dimensions [mm]				
Level 3: 11, 2 ^{0, 2} Level 2: 9, 1 ^{-0, 2} Level 1: 8, 2 ^{-0, 2} And 1, 2 ^{-0, 2}	Building Bit 10 Bit 10<								
Length	for mating:			Positio	DN - 25 				
					24x 3 (248) 50 3.1				
	Board drillings								
	All holes Position -25								
						1			
Thin print part numb	ore: porfo	rmanaa lay				33			


Type DE

Male connectors, straight

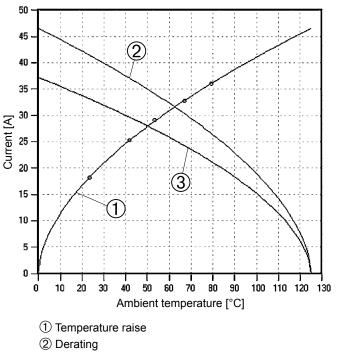

			Contact ler	ngth [mm]						
	Identification	No. of contacts	Contact ler mating t side	ermination side	Part number	Contact configuration				
	Type DE	200	8.2	3.7	17 10 200 1201 17 10 200 2201	A A				
	Type DE	244	8.2/ 11.2	3.7	17 10 244 1201 17 10 244 2201	C C				
har-bus HM	Type DE	244	9.7/ 11.2	14.5/ 16.0	17 10 244 1001 17 10 244 2001	I T I T				
-	Contact dimension	ons [mm		 	Conn	ector dimensions [mm] ຍຼຼ				
	Contact dimensions [mm] Pintype — UAB C KLM NPO RS1 v v v v v v v v v v v v v v v v v v v									
	Length for	mating:			Positio					
	$Row = \frac{2t \times 2}{50 \cdot 0.1} = \frac{2t \times 2}{50 \cdot 0.1}$									
					Board	l drillings				
					Positio	All holes				
<u>11</u> 34	Thin print part number	s: perfo	manceleve	51 1	F	$\operatorname{Row}_{24x, \overline{2}, 1; \neq 48}$				

har-bus



The *harbus*[®]*HM* Power connector is designed according to the OBSAI Specification V 1.1. It is well-suited to be used in conjunction with 2 mm *harbus*[®]*HM* connectors. The durability is according to IEC 61076-4-101 (250 mating cycles).

The straight female connector for the backplane is fitted with press-in contacts, the right angled male connector for daugther cards can be supplied with either, press-in or PIHIR (Pin In Hole Intrusive Reflow) termination.



The compact, high temperature moulding can be loaded with up to four high current contacts. Four different contact lengths are available from 7.4 mm to 12.35 mm. This makes sequenced and nonsequenced loadings possible (e.g. with GND and ENA). Any other contact assignments, also partially loaded, are available on request.

Loaded with four power contacts, each contact can carry up to $20 \text{ A} \otimes 70 \text{ °C}$ / 80 % derating.

With a configuration of two power contacts, GND and ENA, the current carrying capacity is even up to 23 A @ 70 °C / 80 % derating per contact.

③ Derating curve at I_{max} x 0.8 (DIN EN 60512-5-2)

The distance between adjacent contacts is 3 mm, which enables wider pcb traces, larger solder paste areas and an improved heat dissipation. For the female backplane connector no special tooling is necessary due to the flatrock design. For the male connector HARTING offers a special press-in tool (see chapter 20).

HARTING's *harbus*[®] HM Signal and Power connectors meet OBSAI (Open Base Station Architecture Initiative) specifications and provide a reliable and cost effective solution for connecting plug-in units to the backplane. The connector solutions available from the HARTING technology group will offer full compatibility and intermateability with base station modules.

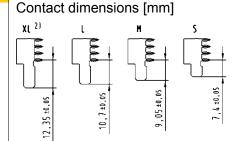
Benefits:

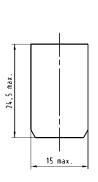
- Small form factor
- High current rating up to 23 A per contact (OBSAI configuration)
- 3 level staggering (or even 4)
- Flatrock design
- Matched with harbus" HM 2 mm connectors

<u>11</u> 36

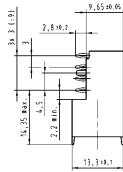
harbus[®] HM Power

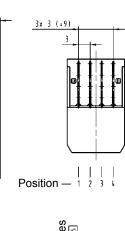
Technical characteristics

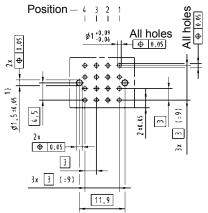

Design according	: OBSAI System Spezifikation V 1.1	
Approvals Underwriters Laboratories Inc.®	: c Rus with their respective ratings documented in file E 102079	
Number of contacts	: up to 4	
Contact spacing	: 3.00 mm	
Clearance and creepage distances between contacts	: > 2.3 mm	
Working current	: 23 A max. (OBSAI configuration) 20 A max. (fully loaded with power contacts)	
Test voltage U _{r.m.s.}	: AC 1500 V min.	
Contact resistance	: <1 mΩ	
Insulation resistance:	: > 10 GΩ	
Temperature range	: - 55 °C + 125 °C	
during reflow soldering	220 °C for 2 minutes, 260 °C max. short-term	
Durability as per IEC 61076-4-101	 Performance level 2 = 250 mating cycles in total. First 125 mating cycles, then 4 days gas test using 0.5 ppm SO₂ and 0.1 ppm H₂S (at 25 + 2 °C and 75 + 3 % humidity). Measurement of contact resistance. The remaining 125 mating cycles are subject to measurement of contact resistance and visual inspection. No abrasion of the contact finish through to the base material. No functional impairment. 	har-bus
Termination technique		
Male connectors	: Press-in or solder termination, suitable for (lead-free) pin-in-hole reflow soldering	
Female connectors	: Press-in termination	
Mating force	: max. 4 N / contact	
Withdrawal force	: min. 0.5 N / contact	
Materials		
Mouldings	: Thermoplastic resin, glass-fibre filled, UL 94-V0	
Contacts	: Copper alloy	
Contact surface	: Selectively gold plated (contact zone)	
Contact styles	: Standard, leading, lagging	
Packaging		
Tube	: Male and female connectors	11
Tape & Reel	: On request for male solder connectors	37


Male connectors angled, with press-in termination

Identification	No. of contacts	Contact length [mm] termination side	Part number	Contact loading
Connector with same sized contacts	4	2.8	17 61 004 2102	
				Position – 4 3 2 1
Connector with same sized contacts	4	2.8	17 61 004 2103	Position $-\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{1}$
Connector with leading/lagging contacts OBSAI configuration	4	2.8	17 61 004 2101	Position $-\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{1}$
Connector with leading contact	4	2.8	17 61 004 2104	Position $-\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{1}$

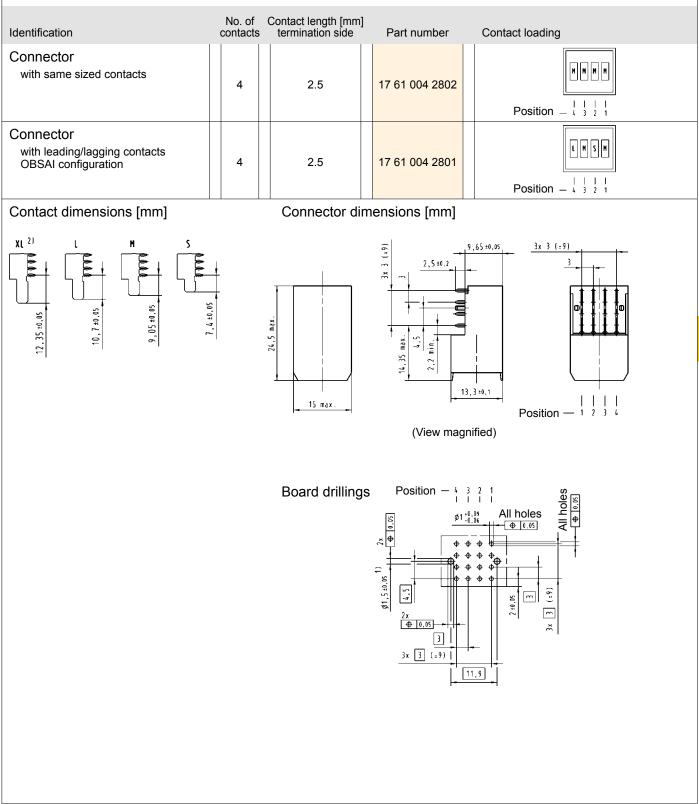

har-bus HM


Connector dimensions [mm]

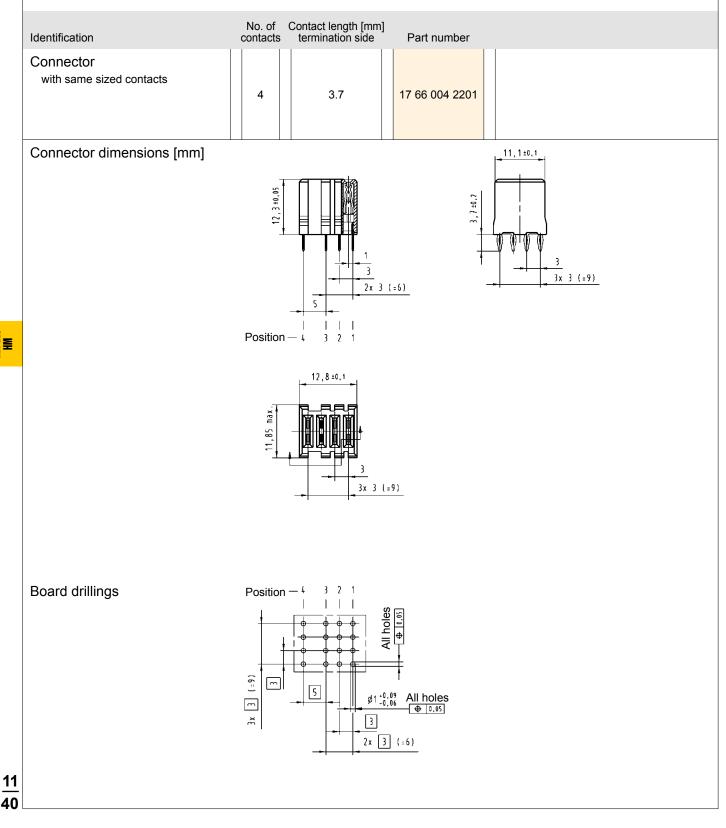


Board drillings

(View magnified)



38 ¹⁾ Non-meta ²⁾ Type XL o


Male connectors angled, with solder (SMC) termination

¹⁾ Non-metallized drillings ²⁾ Type XL on request har-bus HM

Female connector straight, with press-in termination

har-bus HM

harbus® HM

Coding keys

Coding keys are used to prevent mismating of . Cadmium yellow for CompactPCI to identify 3.3 V boards. They can be inserted into the multifunctional area of male and female connectors with special tooling. This can be easily done after the connectors have been pressed in.

Coding keys have different bright and pre-defined RAL colours to simplify the identification. In the table below the colours and code numbers in acc. with the IEC 61076-4-101 are listed. They are used for the following applications:

- bus signalling
- Brilliant blue for CompactPCI to identify 5.0 V bus signalling
- Reseda green to prevent accidental board insertion in VME64x on CompactPCI applications
- Strawberry red to prevent accidental board insertion in telephony applications
- · Pastel orange for user defined bus
- Nut brown for rear I/O and user I/O

Coding keys for female connectors

Coding key	Code number	Colour	Part number	Coding key	Code number	Colour	Part number
3 8 6 5	3568	Pastel orange RAL 2003	17 79 000 0010		1247	Pastel orange RAL 2003	17 79 000 0020
(4 3) (<u>87</u>)	3478	Steel blue RAL 5011	17 79 000 0011		1256	Steel blue RAL 5011	17 79 000 0021
	3467	Slate grey RAL 7015	17 79 000 0012		1258	Slate grey RAL 7015	17 79 000 0022
6 5	3456	Cadmium yellow RAL 1021 for CPCI, 3.3 V	17 79 000 0013		1278	Cadmium yellow RAL 1021 for CPCI, 3.3 V	17 79 000 0023
2 8 7 5	2578	Reseda green Ral 6011	17 79 000 0014		1346	Reseda green Ral 6011	17 79 000 0024
	1567	Brilliant blue RAL 5007 for CPCI, 5.0 V	17 79 000 0015		2348	Brilliant blue RAL 5007 for CPCI, 5.0 V	17 79 000 0025
	1356	Blue lilac RAL 4005	17 79 000 0016		2478	Blue lilac RAL 4005	17 79 000 0026
	1248	Strawberry red RAL 3018	17 79 000 0018	3 5 6 7	3567	Strawberry red RAL 3018	17 79 000 0028
	1236	Nut brown RAL 8011	17 79 000 0019		4578	Nut brown RAL 8011	17 79 000 0029

Coding keys for male connectors

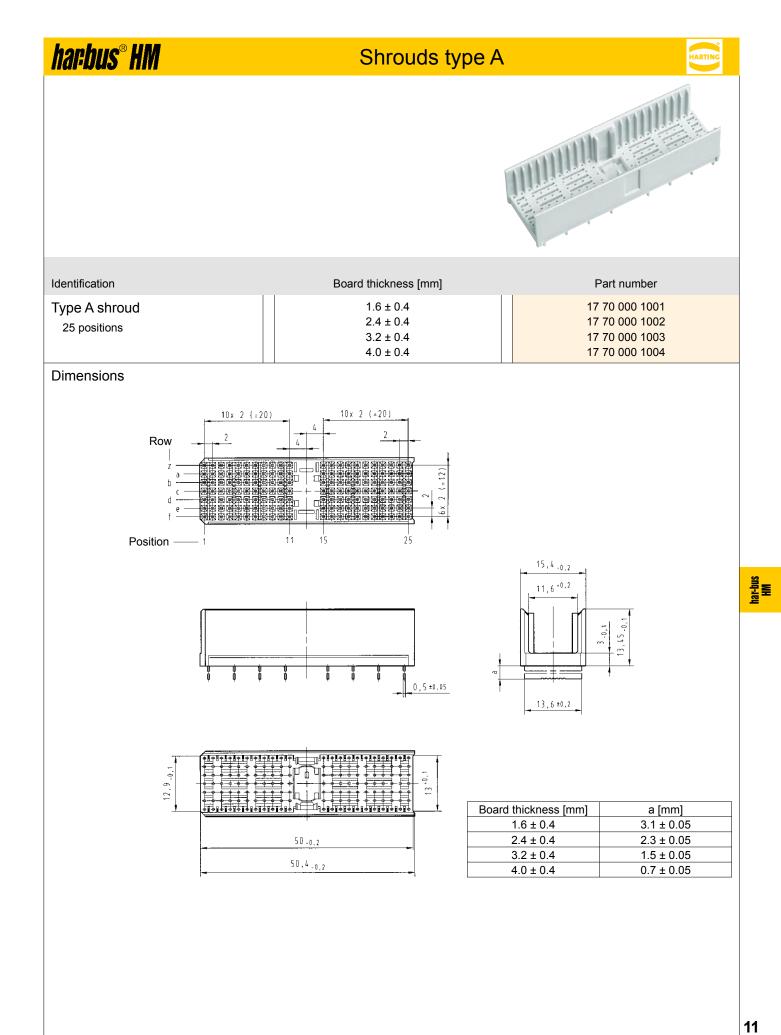
ar-bus HM

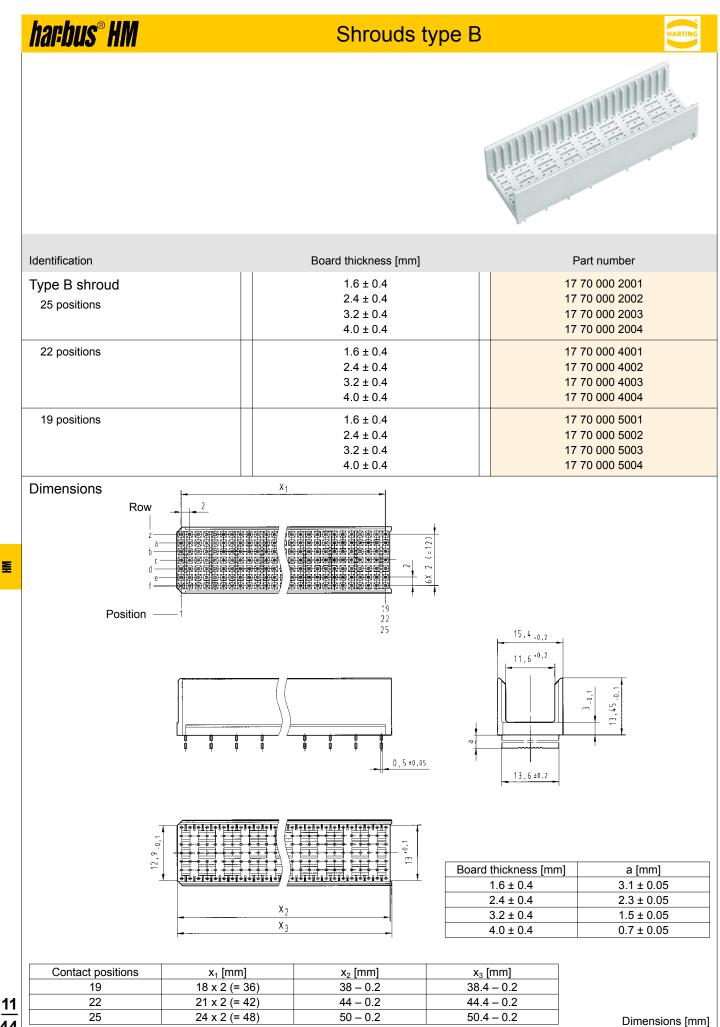
har:bus® HM

HARTIN

HARTING's **harbus**^{*}**HM** shrouds protect the pins protruding the rear side of the backplane from irregular mating tolerances, thus ensuring a quality connection.

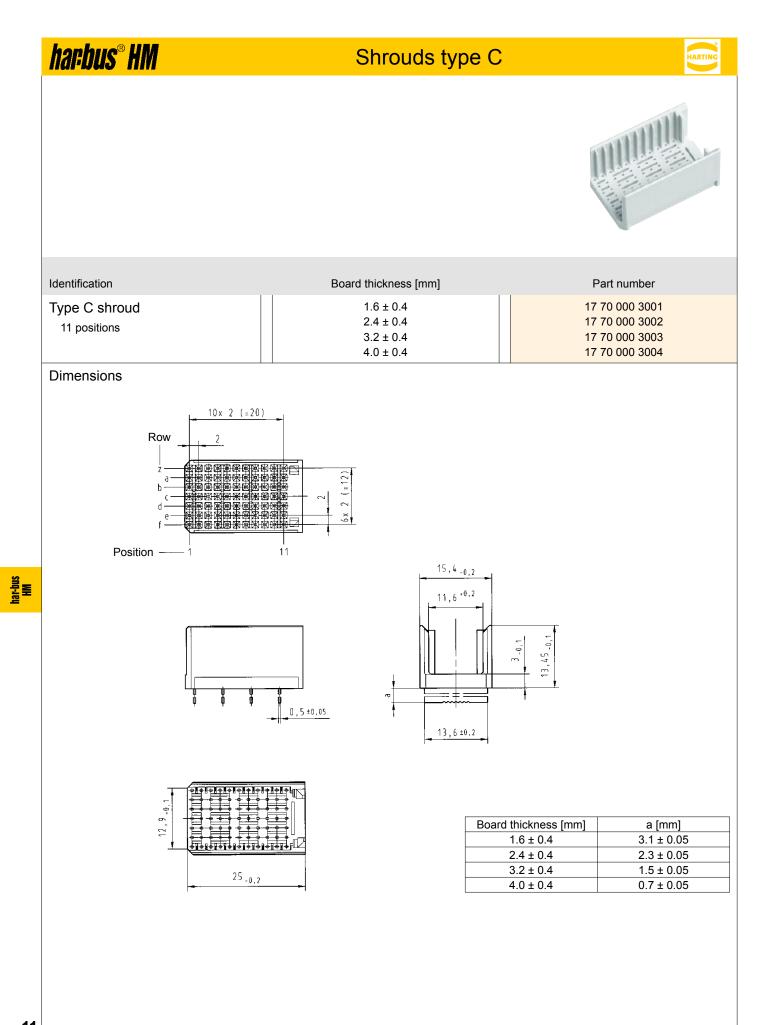
To accommodate pcb thickness, from 1.6 up to 4 mm nominal, the shrouds have integrated standoffs of corresponding height.


Thus forming a one piece solution that reduces assembling cost significantly.


The shroud can be mounted without the additional requirement of spacers to ensure the desired pin lengths on the rear side of the pcb.

Fixing of the component is carried out on the rear post via a smooth friction fit process.

For ease of assembly the same tooling as for the press-in connectors on the front side is utilised for assembly.



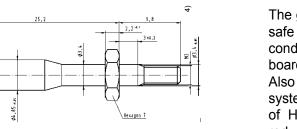
har-bus HM

harbus® HM Shrouds type AB

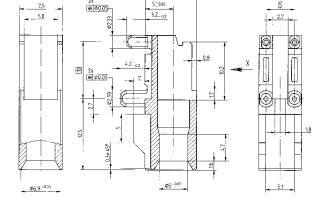
Identification	Board thick	mess [mm]	Pa	rt number
Type AB shroud 25 positions	1.6 ± 2.4 ± 3.2 ± 4.0 ±	± 0.4 ± 0.4	17 70 17 70	0 000 8001 0 000 8002 0 000 8003 0 000 8004
22 positions	1.6 = 2.4 = 3.2 = 4.0 =	± 0.4 ± 0.4	17 70 17 70	0 000 7001 0 000 7002 0 000 7003 0 000 7004
19 positions	1.6 = 2.4 = 3.2 = 4.0 =	± 0.4 ± 0.4	17 7(17 7(0 000 6001 0 000 6002 0 000 6003 0 000 6004
e – Araara kar				13.5
	X ₂ X ₃		und thickness [mm] 1.6 ± 0.4 2.4 ± 0.4 3.2 ± 0.4 4.0 ± 0.4	$\begin{array}{c} a \ [mm] \\ \hline 3.1 \pm 0.05 \\ \hline 2.3 \pm 0.05 \\ \hline 1.5 \pm 0.05 \\ \hline 0.7 \pm 0.05 \end{array}$
$\begin{tabular}{ c c c c c c } \hline Contact positions & x_1 [mm]$ \\ \hline 19 & 7 $x 2$ (= 14)$ \\ \hline 22 & 8 $x 2$ (= 16)$ \\ \hline 25 & 10 $x 2$ (= 20)$ \\ \hline \end{tabular}$	x ₂ [mm] 37.9 43.9 49.9	x ₃ [mm] 38.2 44.2 50.2	x ₄ [mm] 4 3 4	Dimensions [mm]

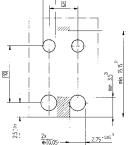
Dimensions [mm] 11 45

Dimensions [mm]


har:bus® HM

Guiding system





Receptacle for guide pin

Guide pin

Board drillings 2x (View-X)

¹⁾ Non-metallised drillings

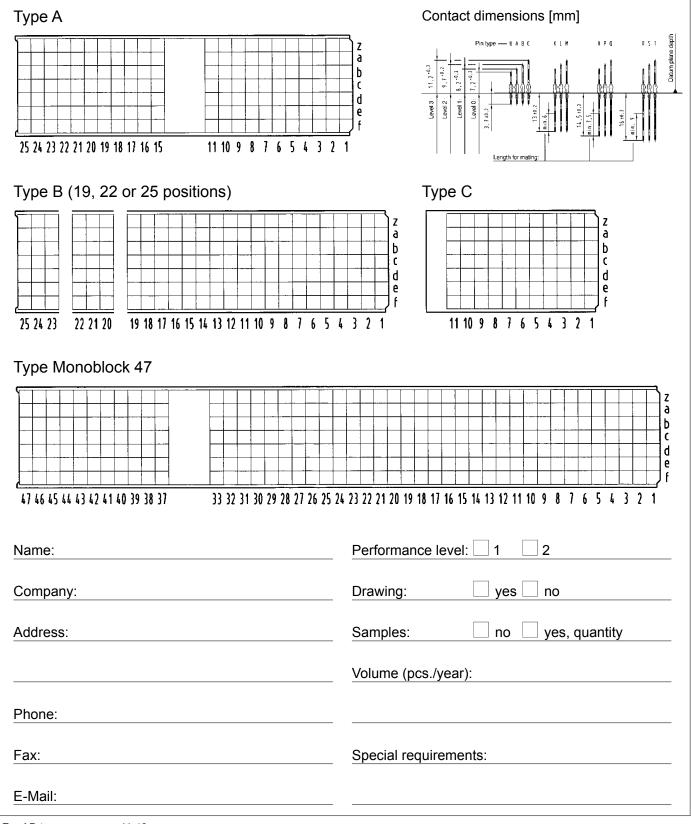
²⁾ No tracks, except solder eyes

³⁾ Limit area of components (valid for both pcb sides)

⁴⁾ Recommended board drilling is 3.5 (-0.05) mm

The guide pin solution from HARTING allows safe mating under sometimes extreme conditions. This might be large and heavy boards that bow under their own weight. Also insufficiently aligned or worn out rack systems can be tolerated better with the use of HARTING's guiding system, which also reduces the potential danger of damaging cards when being forced into flexing racks.

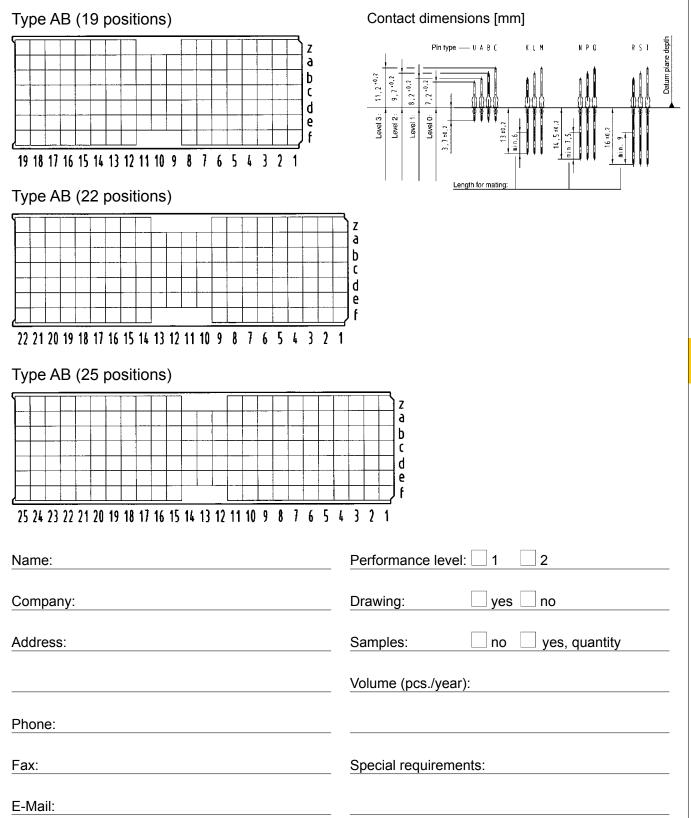
The guide pin and receptacle's design solution allows to overcome a 3 mm [.118'] offset between the backplane and the mating daughtercard. The reducing diameter of the pin (from 4.85 mm to 3.4 mm) ensures that its positioning task is smoothly transferred to the connectors as soon as they start to engage. Finally the thin diameter section of the guide pin is no longer positioned by the ferrule of the receptacle, ensuring that the pin is able to freely follow any movement imposed by the engaging connector. This ensures that there is no static stress between the connectors and the guiding system.


The rugged metal designed guide pin is screwed to the backplane with standard hexagon screws. Whereas the molded receptacle is designed with four pressin pegs that can be installed to the board together with the connectors.

The tooling can be ordered with the part numbers **07790000157** (top tool) and **07790000158** (bottom tool).

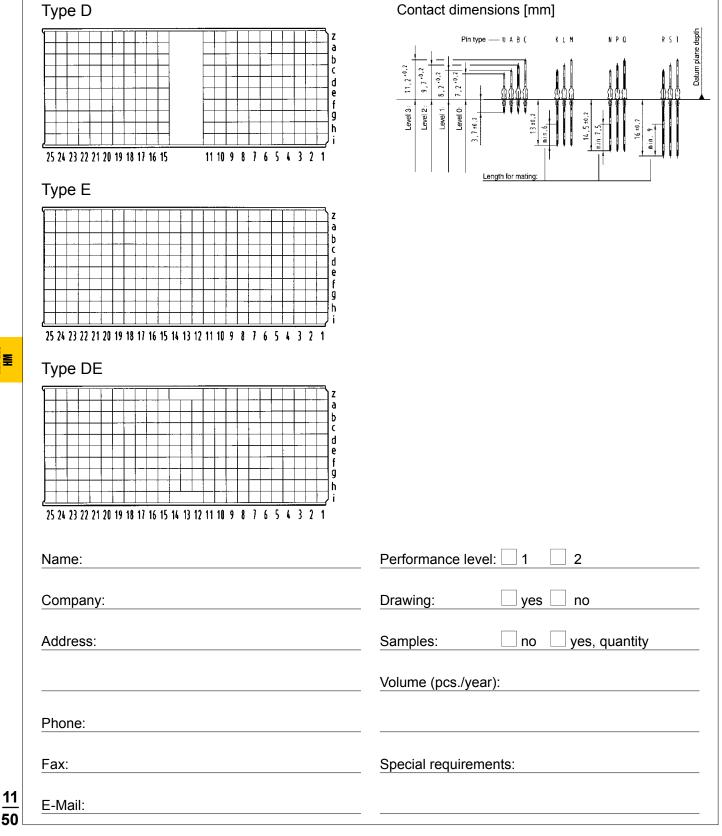
HARTING customer request form*

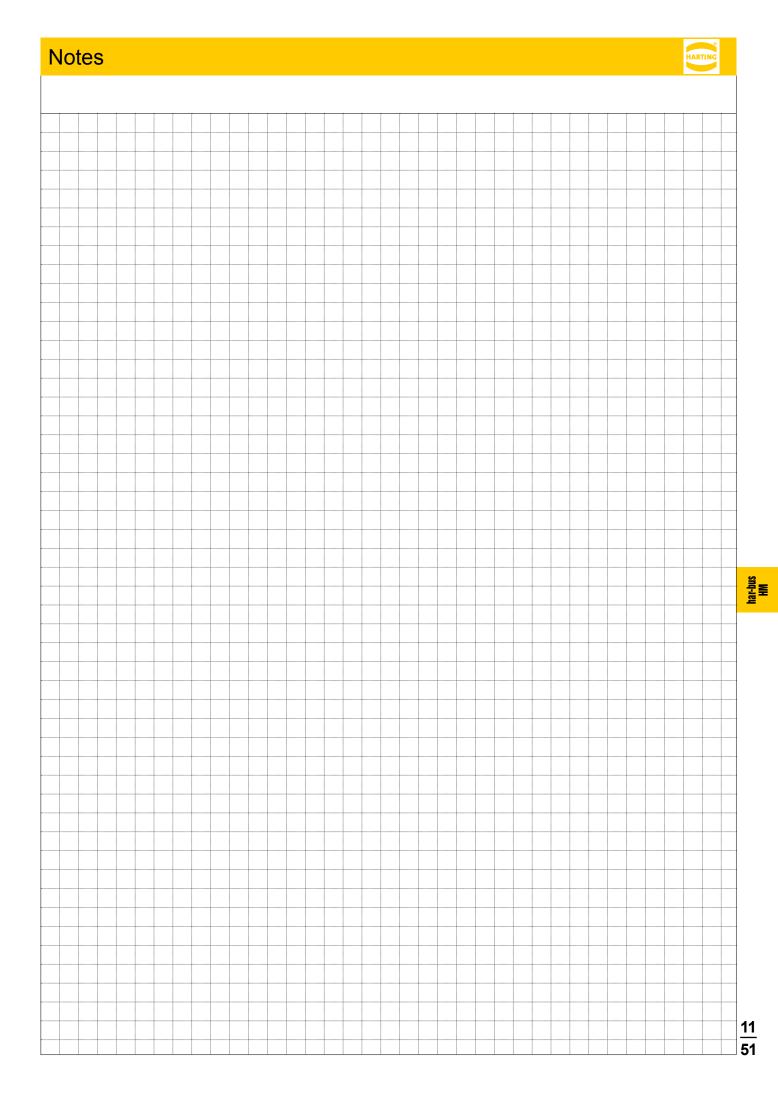
Should you need a specially loaded connector for your application, please use this request form. Fill out the drawing for the desired connector style and mark each position with the required contact length (A, B, ..., S, T).


11

harbus® HM

HARTING customer request form


Should you need a specially loaded connector for your application, please use this request form. Fill out the drawing for the desired connector style and mark each position with the required contact length (A, B, ..., S, T).



harbus® HM

HARTING customer request form

Should you need a specially loaded connector for your application, please use this request form. Fill out the drawing for the desired connector style and mark each position with the required contact length (A, B, ..., S, T).

