

VMCSOLAR

Bombeo solar con convertidores de frecuencia

Sr. Javier García

Resp. Técnico Murcia, 7/3/2018

Convertidores de frecuencia para bombeo

 Control de la velocidad de giro (rpm) del motor AC de la bomba modificando la frecuencia

$$rpm = 60 * \frac{f}{p}$$
 f Frecuencia (Hz) p Pares de polos

- La velocidad de giro de la bomba determina el caudal de agua bombeado.
- Obtención del caudal más adecuado para los requerimientos de eficiencia y necesidades del usuario

Instalaciones de bombeo

- Instalaciones alejadas de la red eléctrica
- Necesidad de usar generadores de gasoil
- Elevados costes de abastecimiento, consumo y mantenimiento
- Problemas de emisiones y ruidos

Instalaciones de bombeo

Coste de la Energía

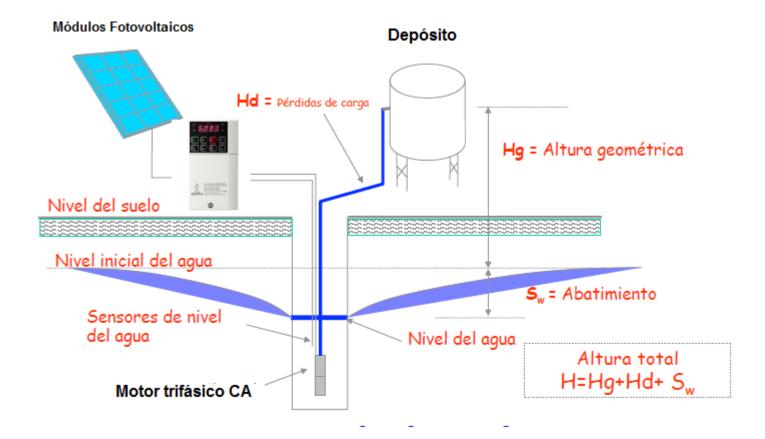
- La energía eléctrica supone el mayor coste de la instalación
- El continuo aumento del coste requiere actuaciones con
 2 estrategias:
 - Uso de convertidores de frecuencia para mejorar la <u>eficiencia energética</u>
 - 2.- Uso de energía solar para el ahorro en energía
- Las 2 estrategias son complementarias y pueden actuar por separado o en conjunto.

Ventajas del bombeo solar

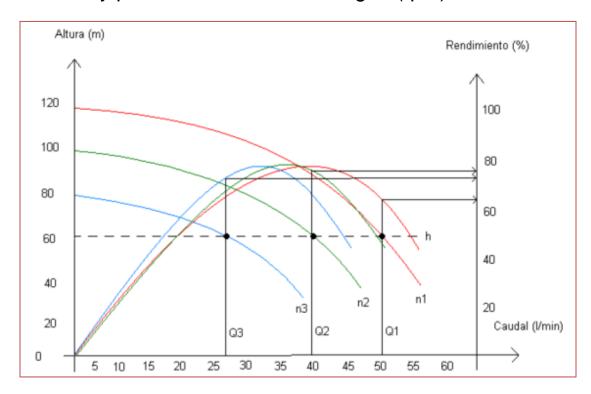
- Energía de origen renovable (inagotable y gratuita)
- Ahorro importante respecto al combustible o factura de la luz
- Independencia energética
- Costes estables y conocidos
- Alta fiabilidad y larga vida útil
- Funcionamiento silencioso
- Operación automática, mantenimiento mínimo
- Ecológico: no emite partículas contaminantes

Ventajas del bombeo solar con convertidores de frecuencia

- Ahorro en el consumo de energía
- Mejora de la vida útil del conjunto motor/bomba



Elementos principales de una instalación



Bombas centrífugas

Las principales características de una bomba centrífuga están referenciadas al caudal y por tanto la velocidad de giro (rpm).

Para cada velocidad de giro (n)

La curva H-Q determina una altura (h) para cada caudal (Q).

La curva η -Q determina el rendimiento (η) para cada caudal (Q).

www.vmc.es

Bombas centrífugas

Las leyes de semejanza de una bomba centrífuga relacionan la velocidad de giro con el caudal y la potencia consumida

$$\frac{Q0}{Q1} = \frac{f0}{f1}$$

$$\frac{P0}{P1} = \left(\frac{f0}{f1}\right)^3$$
Por lo que
$$Q1 = \frac{Q0}{\frac{f0}{f1}}$$
P1 = $\frac{P0}{\left(\frac{f0}{f1}\right)^3}$

- El caudal disminuye proporcionalmente a la relación entre frecuencias
- La Potencia consumida disminuye el cubo de la relación entre frecuencias

Por ejemplo una bomba: a 50Hz bombea 2.000 litros/minuto y consume 10 kW a 40Hz bombea 1.600 litros/minuto y consume 5,12 kW

Con una reducción de casi el 50% del consumo bombea el 80 %

Bombeo solar con variadores

Bombas centrífugas

El par o torque del motor depende de la tensión y la frecuencia

$$T_m = K_m ()$$

 $V(f)^2$

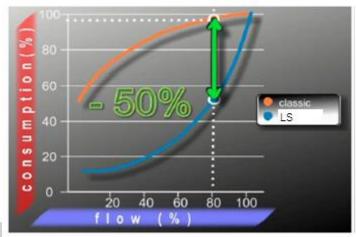
El par o torque de la bomba depende del cuadrado de la frecuencia

$$T_b = K_b(f)$$

*Km y Kb son constantes de las características de las bombas, suministradas por el fabricante.

El acoplamiento mecánico entre el motor y la bomba requiere la igualdad entre sus pares es por tanto recomendable utilizar un control tensión/frecuencia cuadrático V(f)² en aplicaciones con bombas centrífugas con el objeto de mantener el rendimiento.

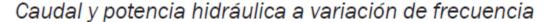
Los variadores de velocidad incorporan el control V/f cuadrático

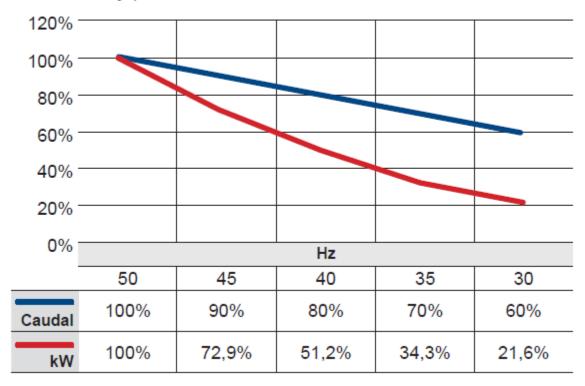


Ahorro de energía en par variable

- La velocidad del motor se ajusta acorde al caudal demandado
- La reducción de caudal ocasiona una caída sustancial de la energía absorbida
- Ejemplo de un bomba equipada con un variador de velocidad:
 - Regulación del caudal por el variador.
 - al 80% del caudal nominal, la potencia consumidad es del 50% de la nominal

Ahorro en potencia activa!





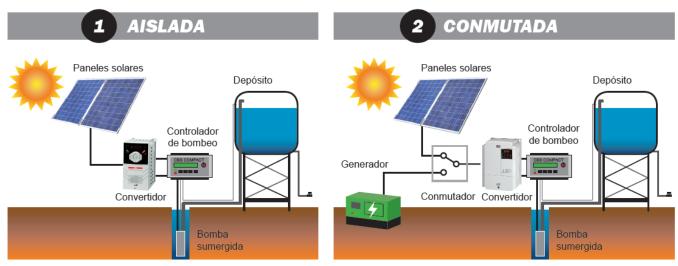
Ahorro de energía en par variable

La potencia consumida disminuye el cubo de la relación entre frecuencias

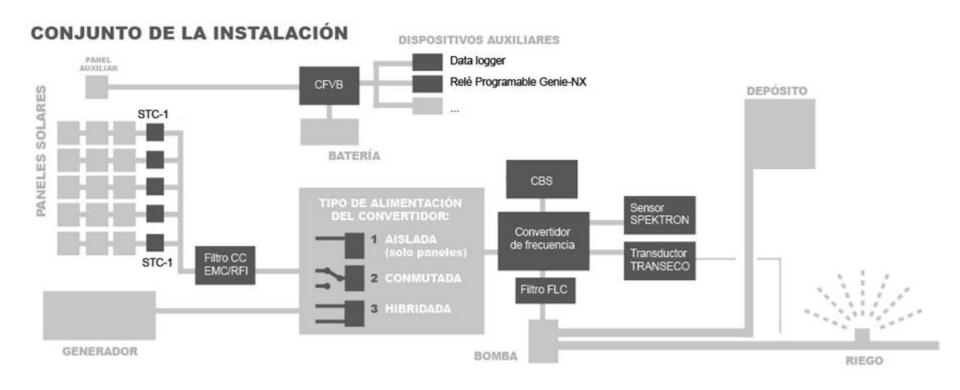
Ahorro de energía en par variable

Las leyes de semejanza de una bomba centrífuga relacionan la velocidad de giro con el caudal y la potencia consumida

Para un mismo volumen bombeado, la energía consumida disminuye al disminuir la frecuencia y el caudal, aumentando las horas de bombeo



Tipos de instalaciones


En instalaciones hibridadas, la tensión de las placas tiene que ser un 10% superior a la tensión de red

Conjunto de la instalación

Convertidores LS (iG5A, S100, H100, iS7) con controlador de bombeo solar CBS

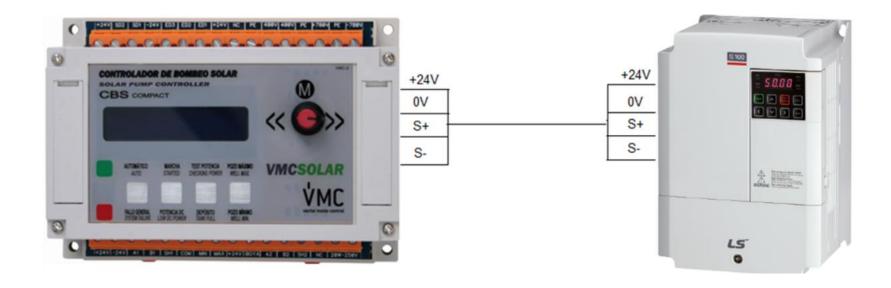
(de 0,4 a 375kW)

Controlador de bombeo solar CBS

CBS Compact

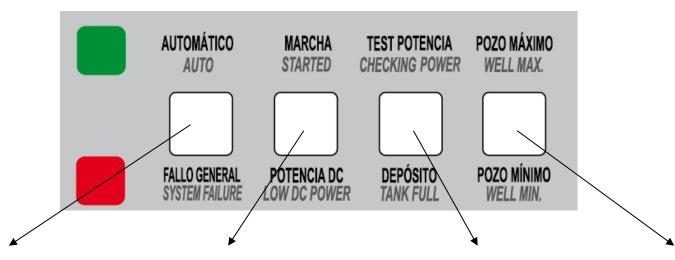
- Montaje en carril DIN en el interior del armario
- Bornero interno

- Seguimiento del Punto de Máxima Potencia (MPPT)
- Instalación solar aislada, conmutada o hibridada con la red eléctrica
- Control de niveles del pozo y del depósito
- Programación horaria RTC
- Monitorización y data logger vía RS485 Modbus
- Display y teclado para configuración in situ
- Protección y registro de incidencias
- Pantalla LCD en 5 idiomas (español, inglés, francés, italiano, portugues)



Fácil de instalar y programar

- Con solo cuatro hilos el controlador carga todos los parámetros al variador a cada puesta en tensión
- Reconoce la talla del variador y ajusta el nivel de corriente del motor



Indicadores LED

AUTOMÁTICO	FALLO GENERAL
El sistema está en automático y listo para funcionar.	Hay un fallo que para el equipo. Ver pantalla para más información.

MARCHA	POTENCIA DC
Bomba en marcha	Ahora mismo no hay potencia solar suficiente para funcionar.

TEST POTENCIA	DEPÓSITO
El control está	Depósito al
midiendo la	máximo.
potencia antes	Bomba
de arrancar.	parada.

POZO	POZO
MÁXIMO	MÍNIMO
Pozo al máximo	Pozo al mínimo. Bomba parada.

Bombeo solar con variadores

Características CBS

Descripción de funcionalidades

- 1.- Arranque con potencia suficiente hasta 22kW
- 2.- Seguidor del punto de máxima potencia
- 3.- Regulación de presión
- 4.- Arranque-Paro programable por tiempo
- 5.- Arranque especial para motores en baño de agua
- 6.- Llenado de tuberías
- 7.- Protección por sub-carga
- 8.- Niveles pozo/depósito
- 9.- Control remoto (Modbus RTU)
- 10.- Operación y mantenimiento fáciles
- 11.- Seguimiento

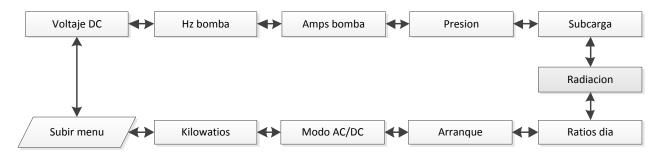
Programación arranque y/o paro diario

Arranque

- Por potencia: Arranca cuando hay potencia suficiente en los paneles solares. (Arranca a 5Hz y mide la corriente y tensión)
- Por reloj: Arranca a la hora programada.
- Por sensor radiación solar: Cuando alcanza un umbral prefijado (equipos mayores de 22kW)

Paro

- Por potencia: Cuando ya no hay potencia suficiente en los paneles solares.
- Por reloj: A la hora programada.
- Por caudal: Cuando se ha bombeado el caudal programado.



Bombeo solar con variadores

Características CBS

Sub-menú Datos marcha

Los datos disponibles son:

Voltaje dc: Voltaje de los paneles solares

Hz bomba: Frecuencia de giro de la bomba

Amps bomba: Consumo en amperios del motor

Presión: Presión en tuberías (se necesita sensor de presión

instalado)

% Carga: % carga actual del motor

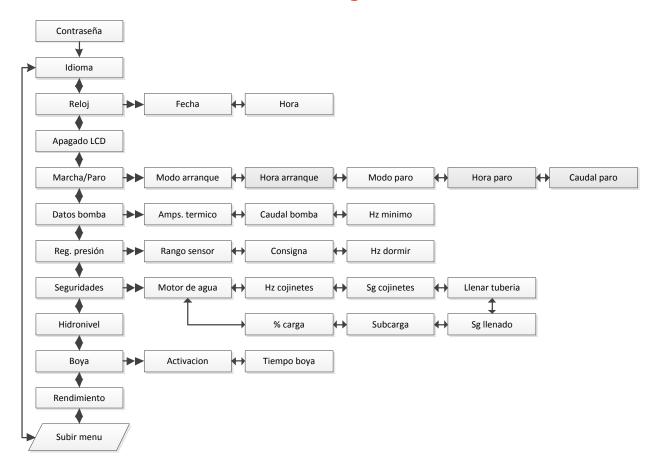
Radiación: W/m2 de radiación disponible (se necesita sensor

instalado)

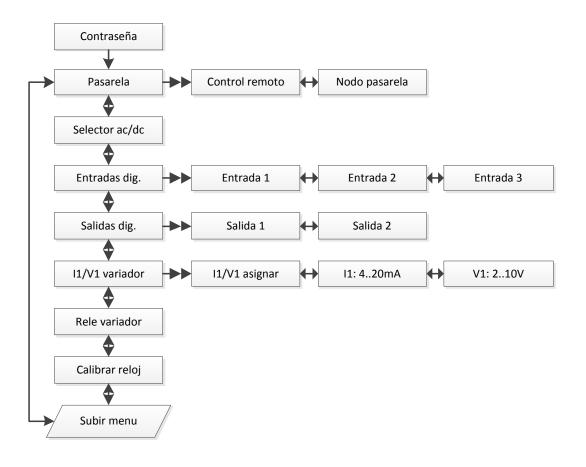
Ratios día: Tiempo de marcha / № de arranques / Caudal, del día en

curso

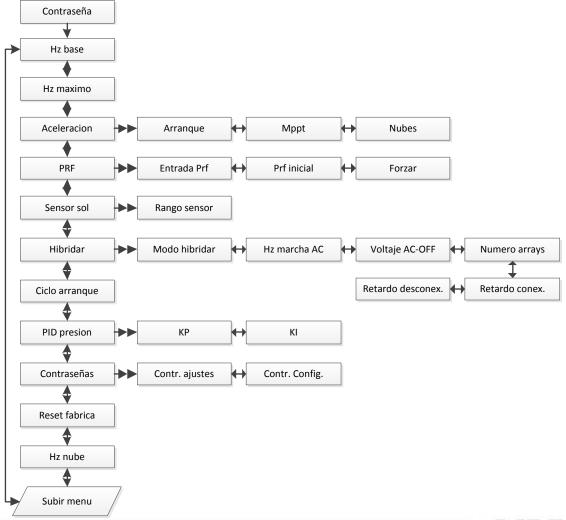
Arranque: Información del último arranque efectuado Modo ac/dc: Modo actual de funcionamiento (AC o DC)


Subir menú: Volver al menú principal

Sub-menú Ajustes



Sub-menú Hardware



Bombeo solar con variadores

Características CBS

Sub-menú Configurar

Bombeo solar con variadores

Características CBS

Hibridación AC

Utilice este menú para configurar las funciones de hibridación, siguiendo las siguientes instrucciones:

- Modo de hibridación: Seleccionar entre Pasivo / Siempre On / On-Off.
- Hz marcha AC: Ajuste de la frecuencia máxima cuando alimentamos con AC.
- Tensión AC: Ajustar la tensión para parar el generador.
- Retardo activación: Ajustar el tiempo de retardo en minutos activación generador diésel.
- Retardo parada: Ajustar el tiempo de retardo en minutos desactivación generador diésel.

Opción password personalizado para ajustes y configuración

En el modo configurar, se pueden personalizar las contraseñas de acceso a los menús protegidos:

Contraseña Ajustes: Acceso al menú de *Ajustes*. Contraseña Configurar: Acceso al menú *Configurar*.

Hay unos valores predefinidos de fabrica, pero si el cliente se olvida de la contraseña, hay que cargar el firmware en el equipo de nuevo.

No se recomienda indicar estos valores a no ser que sea personal técnico cualificado. Un error en los ajustes podría dañar la bomba o el variador !!!!

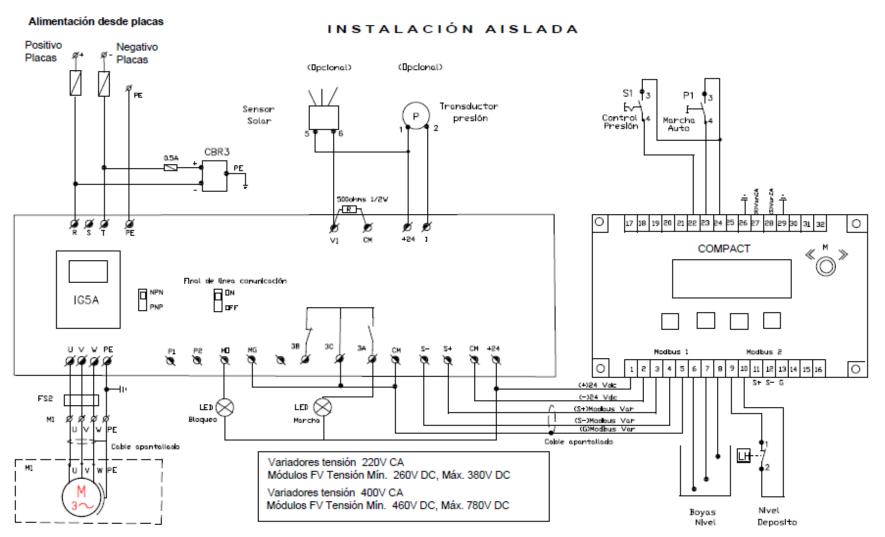
Datalogger Modbus

El interface Datalogger permite acceder al sistema de CBS a través de un puerto MODBUS-RTU auxiliar.

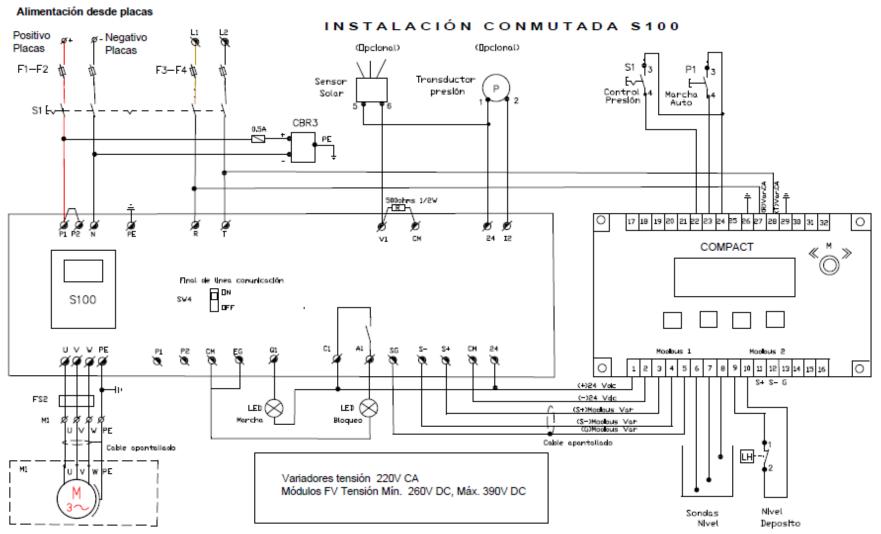
Este puerto realiza dos funciones simultáneas:

- · Acceso a las variables internas del controlador CBS.
- · Acceso a las variables internas del variador (función pasarela).

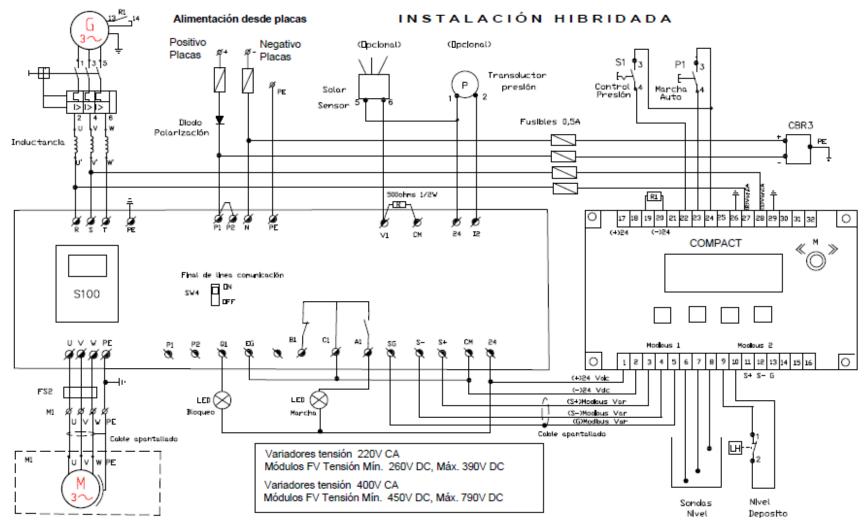
El acceso a uno u otro banco de variables se gestiona por el rango de direcciones de memoria, siendo la función de pasarela transparente para el usuario.


El interface datalogger del CBS trabaja siempre como esclavo.

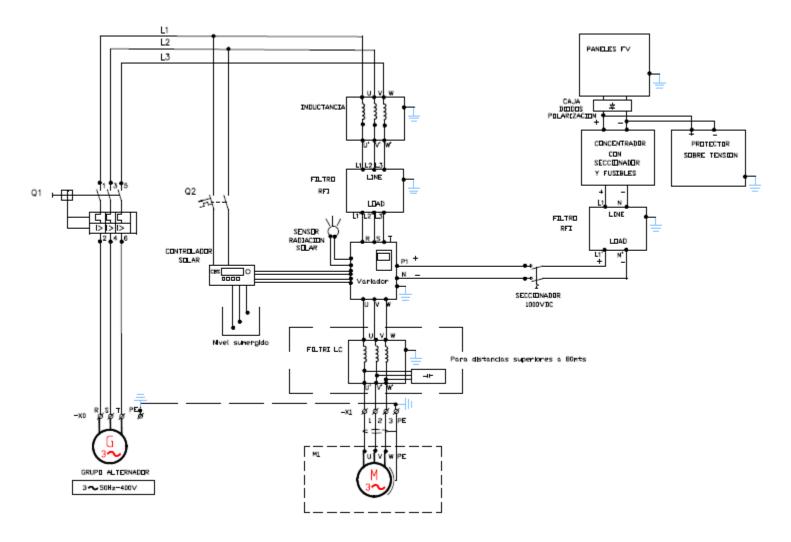
Esquema CBS Compact (variador iG5A)



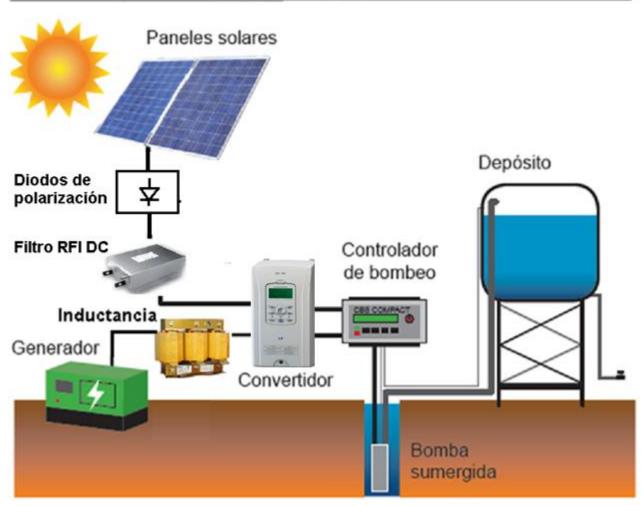
Esquema CBS Compact (variador S100)



Esquema CBS Compact (S100)



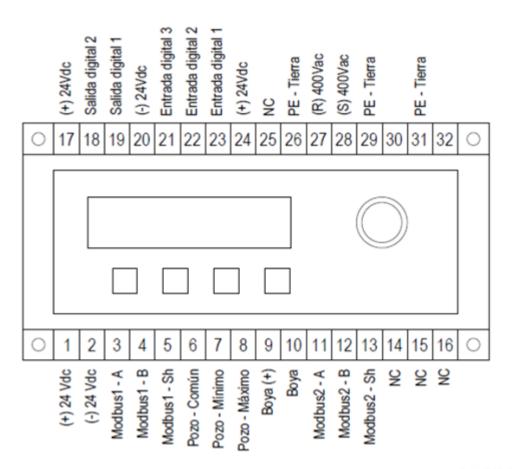
Esquema CBS Compact (variador S100 instalación hibridada)



Bombeo solar con variadores

Hibridación generador y paneles

HIBRIDADA



Conexionado CBS Compact

Conjunto de la instalación

Accesorios

SPEKTRON
 Sensor de radiación solar

Rango de medición de 0 a 1500W/m²

 TRANSECO Transductor de presión

Rango de medición:

- 0...1 bar hasta 0 ... 600 bar relativo
- 0...1 bar hasta 0 ... 25 bar relativo

 CFVB Controlador de carga solar de baterías

Tipo PWM para batería de 12V o 24V

Genie-NX
 Relé programable

Alimentación 12-24V

Módulo de carga

- Para equipos alimentados a 220/400V
- En potencias grandes se deben instalar una o dos unidades en serie.

• STC-1

 Se instalarán en el principio de cada string, tantas como strings tengamos en la instalación hibridada.

Conjunto de la instalación

Accesorios precarga

Potencias

Variador

CBS Compact

Módulo de carga

0,4 a 37 kW

45 a 75 kW

90 a 220 kW

Conjunto de la instalación

Filtros e inductancias

Según las características de la instalación, puede ser adecuada la presencia de filtros EMC o FLC que eviten el ruido eléctrico producido por el convertidor de frecuencia. Para una información más detallada sobre los filtros e inductancias VMC consulte la página web **www.vmc.es.**

Serie FCC Filtro EMC de entrada Corriente continua

- Corriente nominal 150 a 1000A
- Tensión estándar 750Vdc (otras, consultar)
- Baja corriente de fugas
- Fácil de instalar
- Estructura mecánica compacta, poco peso y buena disipación térmica.
- Conexión LINE/LOAD mediante pletinas

Serie FLC

- Tensión nominal 480V
- Frecuencia 50/60Hz
- Corriente nominal 4... 400A
- Caída de tensión estándar 4%
- Tensión de aislamiento 2kV
- Sobre carga máxima:
 - Permanente 1.17 In
 - Transitoria (1/2 min) 2 In
- Construcción tipo cobre o aluminio

VMCSOLAR

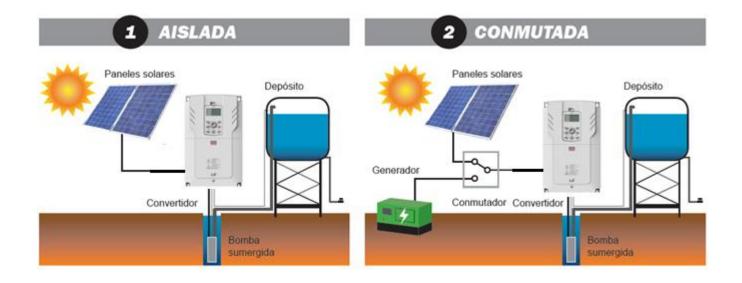
Bombeo solar

Sr. Javier García

Cargo Resp. Técnico

LugarXXX, Fecha 2018

Elementos principales de una instalación

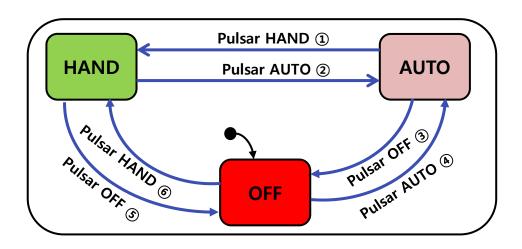


Solución VMC Solar

Tipos de instalaciones

Características de funcionalidad H100 Descripción de funcionalidades

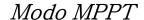
- 1.- Seguidor del punto de máxima potencia
- 2.- Regulación de presión (Hasta 7 diferentes presiones)
- 3.- Arranque-Paro programable por tiempo (Cambio horario Verano –invierno)
- 4.- Arranque especial para motores en baño de agua
- 5.- Llenado de tuberías
- 6.- Protección por sub-carga
- 7.- Niveles pozo/depósito
- 8.- Control remoto (Modbus RTU)
- 9.- Operación y mantenimiento fáciles



Características de funcionalidad H100

Consola LCD dedicada para bombas y HVAC

- ✓ Modo manual (Modo control local) o Modo AUTO (Modo de control remoto) puede ser seleccionado.
- ✓ Funciones estándar para HVAC
 - Tecla Manual: Para control a través de la consola.
 - Tecla Hand → Subir/Bajar: Cambio de velocidad.
 - Tecla Off : Funciones de paro o botón de reset como en el modelo iS7.
 - Tecla Auto: Funcionamiento como se haya pre-ajustado.



Características de funcionalidad H100

Visualización los tres modos de funcionamiento desde la consola LCD

Modo Manual

Modo control PID

Modo visualización Macro 8

Características H100 Visualización datos marcha en Macro 8 y 9

Los datos disponibles son:

Frecuencia salida

Tensión Bus DC

Hora actual

Tiempo restante activación MPPT

Salida de corriente (A)

Salida de tensión (V)

Salida de potencia (kW)

Potencia (%)

Velocidad (RPM)

Valor referencia PID

Valor retorno PID

Estado entradas digitales

Estado salidas digitales

Visualización V1 (V)

Visualización V1 (%)

Visualización V2 (V)

Visualización V2 (%)

Visualización I2 (mA)

Visualización I2 (%)

Características de funcionalidad H100

Macros (Aplicaciones pre-configuradas)

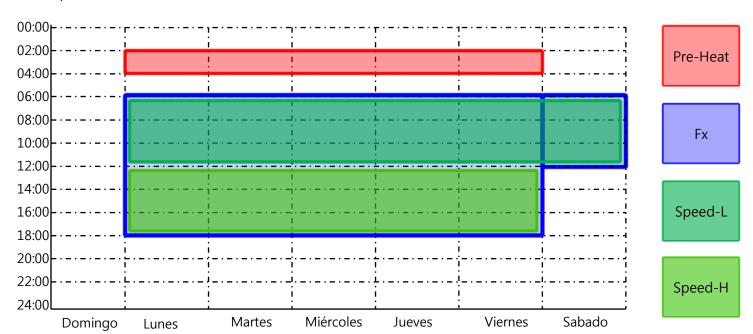
H100 automáticamente ajusta los parámetros más utilizados en aplicaciones HVAC. Simplemente seleccionando la aplicación apropiada automáticamente se configuran los parámetros recomendados, ahorrando tiempo en la puesta en marcha del equipo.

Macros Seleccionables

0	Básico
1	Una bomba
8	Solar básico
9	Solar completo

Ejemplo de Macro

Macro Code	Code	LCD	Default	Mac Cod		Code	LCD	Default
0	-	Jump Code	0 CODE	1		DRV 3	Acc Time	10.0
2	DRV 4	Dec Time	20.0	3		DRV 7	Freq Ref Src	1: Keypad-2
4	DRV 9	Control Mode	1: Slip Compen	5		DRV 11	JOG Frequency	20.00
6	DRV 12	JOG Acc Time	13.0	7		DRV 13	JOG Dec Time	20.0
8	DRV 15	Torque Boost	1: Auto1	9		BAS 70	Acc Time-1	10.0
10	BAS 71	Dec Time-1	20.0	11		ADV 10	Power-on Run	1: Yes
12	ADV 65	U/D Save Mode	1: Yes	13		CON 4	Carrier Freq	3.0
14	CON 70	SS Mode	0: Flying Start-1	15		CON 77	KEB Select	1: Yes
16	OUT 32	Relay 2	14: Run	17		PID 1	PID <u>Sel</u>	1: Yes
18	PID 3	PID Output	0.00	19		PID 4	PID Ref Value	-
20	PID 5	PID Fdb Value	-	21		PID 10	PID Ref 1 Src	4: I2
22	PID 11	PID Ref 1 Set	0.5000	23		PID 25	PID P-Gain 1	70.00
24	PID 26	PID I-Time 1	5.0	25		PID 50	PID Unit Sel	5: inWC
26	PID 51	PID Unit Scale	4: x0.01	27	'	AP1 8	PID Sleep1Freq	5.00
28	AP1 21	Pre-PID Freq	30.00	29		AP1 22	Pre-PID Delay	120.0
30	PRT 8	RST Restart	11	31		PRT 9	Retry Number	3
32	PRT 10	Retry Delay	4.0	33		PRT 11	Lost KPD Mode	3: Dec
34	PRT 12	Lost Cmd Mode	2: Dec	35		PRT 13	Lost Cmd Time	4.0
36	PRT 40	ETH Trip Sel	1: Free Run	37	_	PRT 42	ETH 1min	120
38	PRT 52	Stall Level 1	130	39		PRT 66	DB Warn %ED	10
40	PRT 70	LDT Sel	1: Warning	41		PRT 72	LDT Source	0:Output Current
42	PRT 75	LDT Band Width	10% of Max. LDT Source	43		PRT 76	LDT Freq	20.00
44	M2 4	M2-Acc Time	10.0	45		M2 5	M2-Dec Time	20.0
46	M2 8	M2-Ctrl Mode	1: Slip Compen	47		M2 28	M2-Stall Lev	125
48	M2 29	M2-ETH 1min	120					



Características de funcionalidad H100

Programación (Evento de tiempo)

Utilizando RTC(Real Time Clock), el usuario podrá programar diferentes eventos

- √ 4 periodos de tiempo (Semanalmente)
- √ 8 eventos (Dia)
- √ 8 Tiempos de Evento
- √ 30 Funciones disponibles (Fx, Rx, Step Frec., PID, etc.)
- ✓ Cambio de horario invierno/verano (Fecha principio y final)
- √ 3 Tipos de visualización de fechas (EU / USA / ASIA)

Características H100

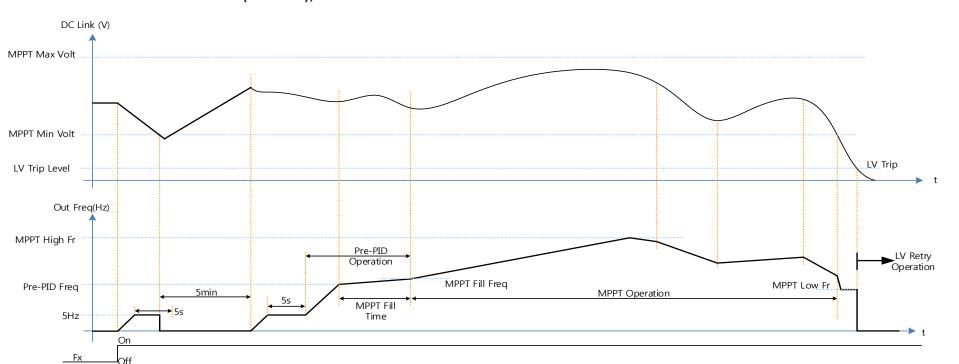
Programación arranque y/o paro diario

Arranque

- Por reloj: Arranca a la hora programada.
- Por sensor radiación solar: Cuando alcanza un umbral prefijado (equipos mayores de 22kW)

Paro

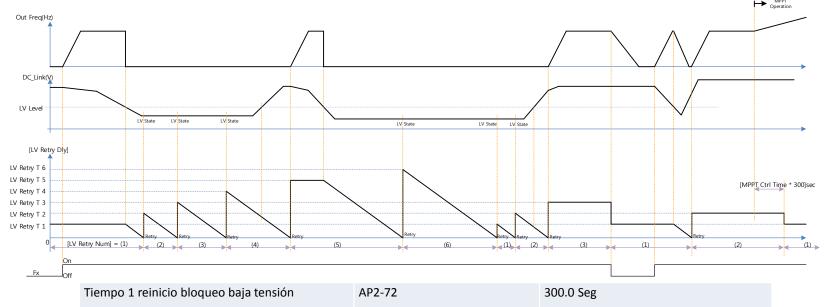
- Por reloj: A la hora programada.
- Por sensor radiación solar. Cuando alcanza un umbral prefijado



Características H100

Modo arranque control MPPT

- ✓ Arranque durante 5 segundos a 5Hz.
- ✓ Si la tensión cae por debajo del nivel mínimo de tensión de arranque el variador, este hará una espera de 5 minutos.
- ✓ Una vez se superan los 5 segundos a 5Hz sin caer la tensión DC, se inicia una rampa suave hasta la velocidad mínima (Pre-PID), si la tensión DC no cae se iniciará la secuencia de control MPPT

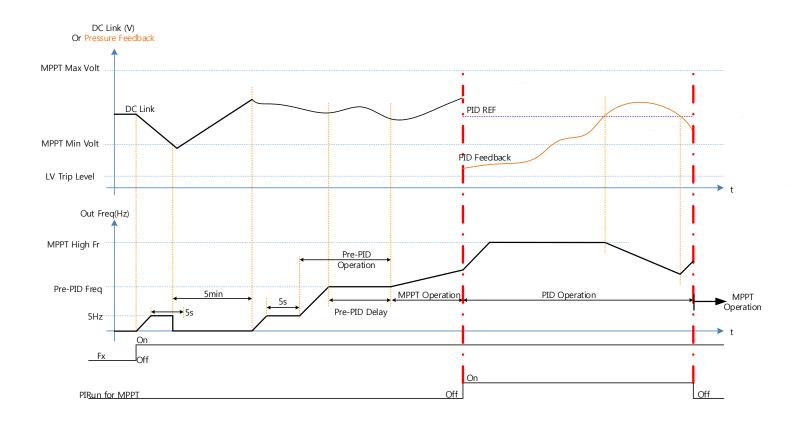


Características H100

Modo de funcionamiento a la caída de tensión (LV)

- ✓ Arranque durante 5 segundos a 5Hz.
- ✓ Si la tensión cae y el variador se bloquea por baja tensión (LV), se inician los 6 intervalos de arranque predefinidos por el cliente para evitar dañar a las bombas con continuos arranques innecesarios.

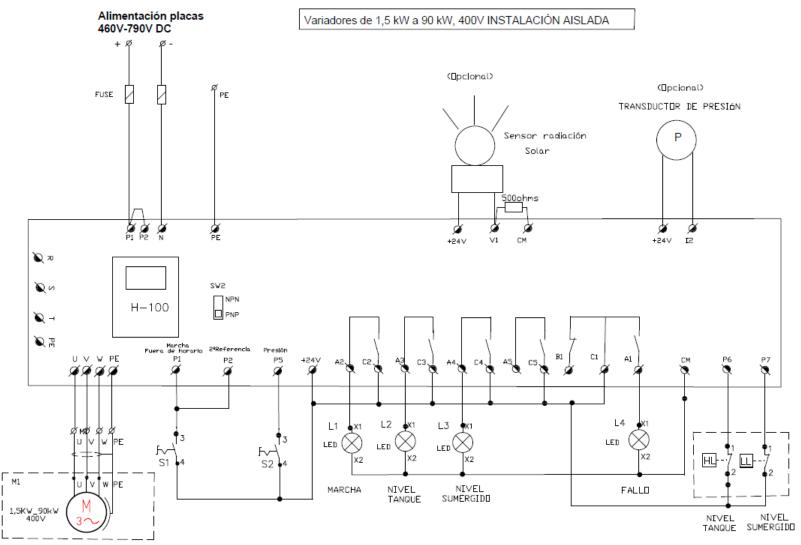
Tiempo 1 reinicio bloqueo baja tensión	AP2-72	300.0 Seg
Tiempo 2 reinicio bloqueo baja tensión	AP2-73	600.0Seg
Tiempo 3 reinicio bloqueo baja tensión	AP2-74	900.0Seg
Tiempo 4 reinicio bloqueo baja tensión	AP2-75	1.200.0Seg
Tiempo 5 reinicio bloqueo baja tensión	AP2-76	1.800.0Seg
Tiempo 6 reinicio bloqueo baja tensión	AP2-77	3.600Seg.



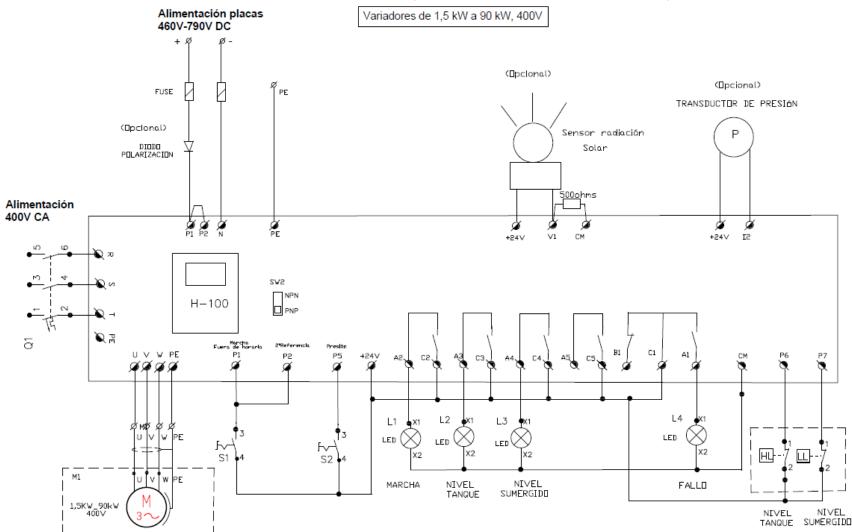
Características H100

Modo de cambio control MPPT a control de presión

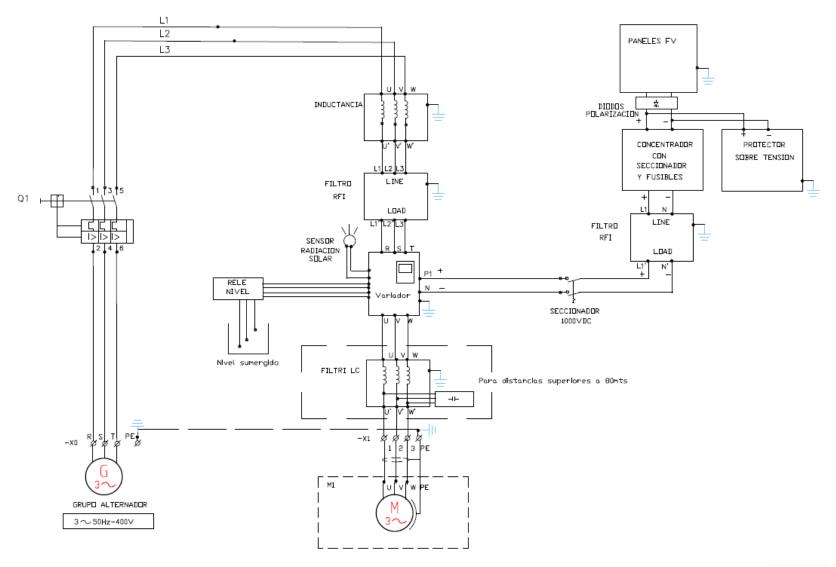
A través de una entrada digital podemos cambiar el modo de funcionamiento.



Esquema H100 (Instalación aislada)



Esquema H100 (Instalación Hibridada)

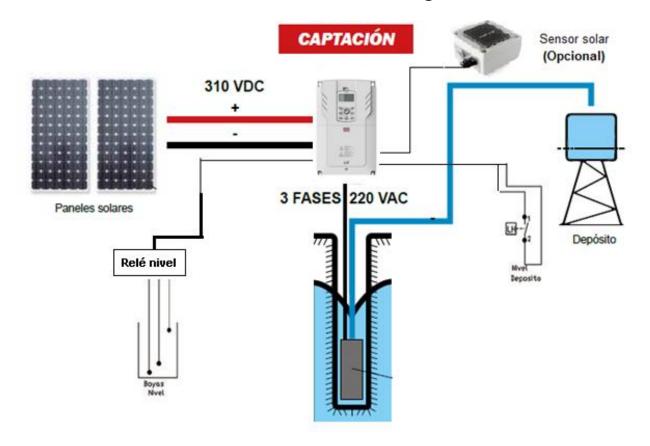


Esquema H100 (Instalación hibridada)

Recomendación tensiones para los conjuntos de paneles solares

Si sobre pasamos los valores recomendados podemos averiar el equipo

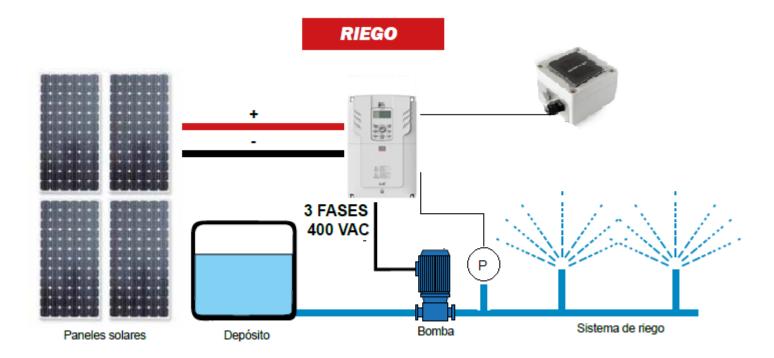
	H100-2	H100-4
Tensión	220V CA	400V CA
Voc Máx.	390V DC	790V DC
Vol. Min	260V DC	460V DC



Solución VMC Solar

2- Básico (Red aislada) radiación solar y niveles.

Recomendación, control nivel bomba sumergida a través de sondas



Solución VMC Solar

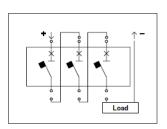
2- Básico (Red aislada) MPPT + Control de presión hasta 7 presiones diferentes.


Equipos con control de puesta en marcha por radiación solar y control de presión

Características CBS

Dispositivos auxiliares

- Comunicación con HMI
- Datalogger


Conjunto de la instalación

Protección y control CC

Magnetotérmico BKH63-DC

1polo=250Vdc 2polos=500Vdc 3polos=750Vdc 4polos=1000Vdc

Contactores MD

Tipo contactor	DC-1 1000V
MD-30a	10A
MD-60a	25A
MD-100a	35A

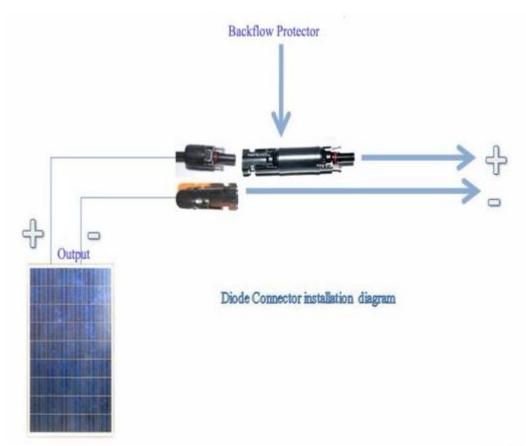
Cajas moldeadas TD/TS-H Hasta 800A

Conjunto de la instalación Accesorios

Diodo de polarización

20A

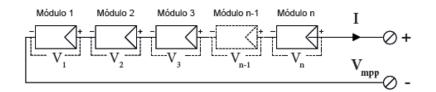
Solar Panel MC4 PV Connector with Built in 20 Amp Diode

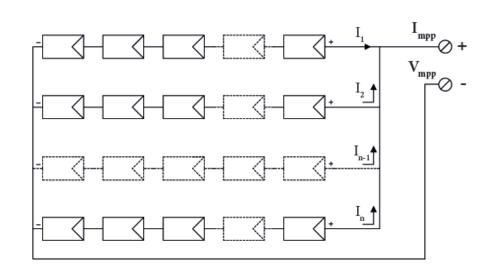


Conjunto de la instalación

Accesorios

Diodo de polarización 20A (Conexionado en hibridación sin STC-1)

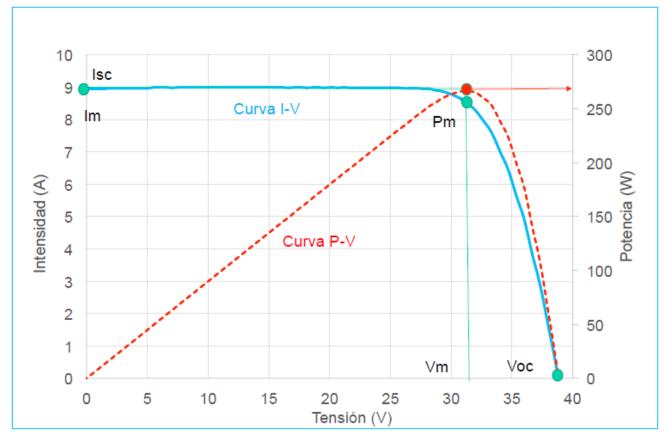



- Los paneles solares se conectan al bus CC del variador
- Los módulos solares se conectan entre sí en tramas serie/paralelo para alcanzar la potencia necesaria
- El Nº módulos en serie determina la tensión Vdc
- El nº de series en paralelo determina la corriente total

Cálculo de valores

$$V_{mpp} = V_1 + V_2 + ... + V_n$$

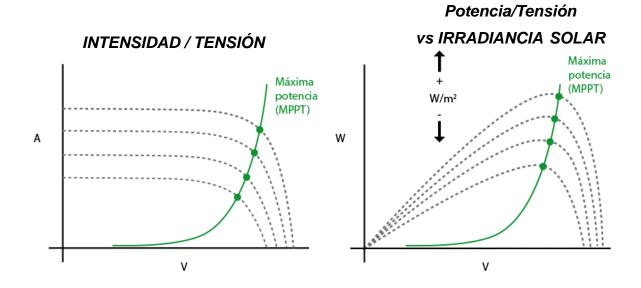
$$I_{mpp} = I_1 + I_2 + ... + I_n$$

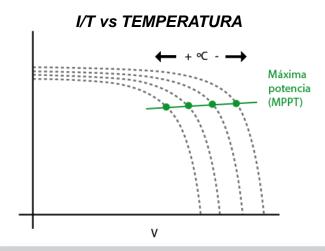


Curva I-V de un módulo FV

Variable en función de la irradiancia, temperatura, espectro solar...

Requisitos del campo solar:

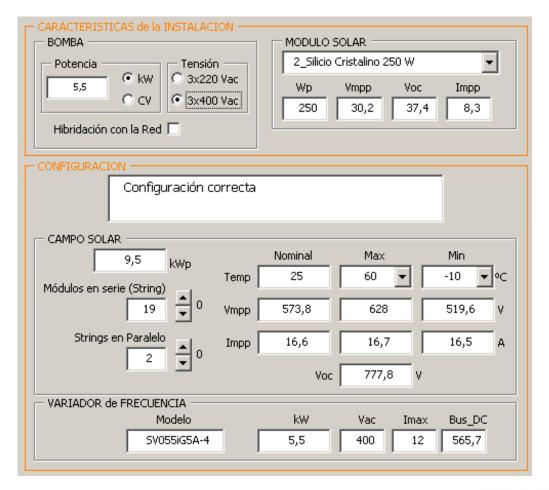

- Potencia: debe ser adecuada a la de la bomba
- Nº de módulos en serie:
 - Deberá adecuarse a la tensión nominal del bus CC del variador
 - No podrá exceder la máxima tensión del bus CC del variador
- Nº de series en paralelo: Podrá exceder la máxima corriente de entrada del convertidor de frecuencia



Curvas de rendimiento paneles fotovoltaicos

Recomendación tensiones para los conjuntos de paneles solares

Si sobre pasamos los valores recomendados podemos averiar los equipos


	iG5A-1/2	S100-1/2	iS7-4	S100-4 / H100-4	
Tensión	220	V CA	400V CA		
Voc Máx.	380V DC	390V DC	780V DC	790V DC	
Vol. Min	270V DC	260V DC	480V DC	460V DC	
Vmpp	310V DC	310V DC	530V DC	530V DC	

Recomendación potencia paneles solares

Configuración del campo solar

Recomendación potencia paneles solares

	CONVERTIDO	₹	MÓDULO				
Tensión	Modelo	Potencia Kw	Potencia kWp	Módulos en serie (string)	Nº Strings	Tipo	
	LSLV008S100-1	0,8	2,39	9	1	265Wp	
	LSLV015S100-1	1,5	4,77	9	2	205WP	
3 x 220 Vac	LSLV022S100-1	2,2	4,77	9	2		
3 x 220 vac	LSLV040S100-2	4	7,16	9	3		
	LSLV055S100-2	5,5	9,54	9	4		
	LSLV075S100-2	7,5	11,93	9	5		
	LSLV022S100-4	2,2	5,04	19	1		
	LSLV040S100-4	4	10,07	19	2		
	LSLV055S100-4	5,5	10,07	19	2		
	LSLV075S100-4	7,5	15,11	19	3		
	LSLV110S100-4	11	20,14	19	4		
	LSLV150S100-4	15	25,18	19	5		
	LSLV185S100-4	18,5	30,21	19	6		
	LSLV220S100-4	22	35,25	19	7		
	LSLV300S100-4	30	50,35	19	10	265 M/n	
	LSLV370S100-4	37	55,39	19	11	265 Wp	
2 400 \/	LSLV450S100-4	45	70,49	19	14		
3 x 400 Vac	LSLV550S100-4	55	85,60	19	17		
	LSLV750S100-4	75	115,81	19	23		
	SV900iS7-4	90	135,95	19	27		
	SV1100iS7-4	110	166,16	19	33		
	SV1320iS7-4	132	196,37	19	39		
	SV1600iS7-4	160	241,68	19	48		
	SV1850iS7-4	185	276,93	19	55		
	SV2200iS7-4	220	327,28	19	65		

Configuración del campo solar

Recomendación potencia paneles solares

	CONVERTIDO	MÓDULO				
Tensión	Modelo	Potencia Kw	Potencia kWp	Módulos en serie (string)	Nº Strings	Tipo
	LSLV0008H100-2	0,8	2,39	9	1	
	LSLV0015H100-2	1,5	4,77	9	2	
3 x 220 Vac	LSLV0022H100-2	2,2	4,77	9	2	
3 X 220 Vac	LSLV0037H100-2	4	7,16	9	3	
	LSLV0055H100-2	5,5	9,54	9	4	
	LSLV0075H100-2	7,5	11,93	9	5	
	LSLV0022H100-4	2,2	5,04	19	1	
	LSLV0037H100-4	4	10,07	19	2	
	LSLV0055H100-4	5,5	10,07	19	2	
	LSLV0075H100-4	7,5	15,11	19	3	5
	LSLV0110H100-4	11	20,14	19	4	
	LSLV0150H100-4	15	25,18	19	5	
	LSLV0185H100-4	18,5	30,21	19	6	265 Wp
	LSLV0220H100-4	22	35,25	19	7	
	LSLV0300H100-4	30	50,35	19	10	
3 x 400 Vac	LSLV0370H100-4	37	55,39	19	11	
	LSLV0450H100-4	45	70,49	19	14	
	LSLV0550H100-4	55	85,60	19	17	
	LSLV0750H100-4	75	115,81	19	23	
	LSLV0900H100-4	90	135,95	19	27	
	LSLV1100H100-4	110	166,16	19	33	
	LSLV13200H100-4	132	196,37	19	39	
	LSLV1600H100-4	160	241,68	19	48	
	LSLV1850H100-4	185	276,93	19	55	
	LSLV2200H100-4	220	327,28	19	65	

Gráfico de radiación solar

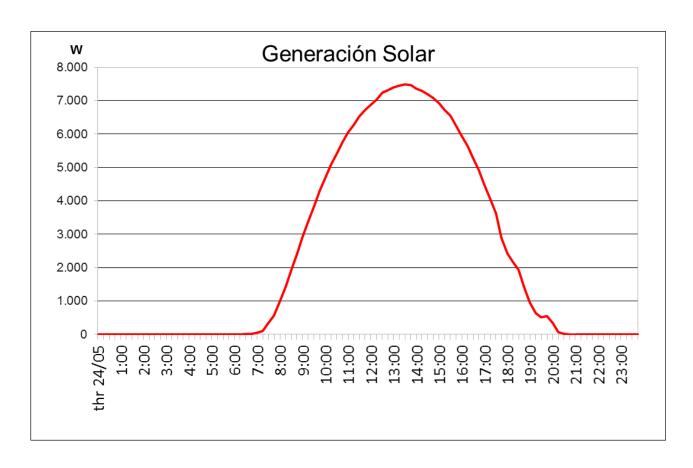


Gráfico de radiación solar hibridada con la red eléctrica

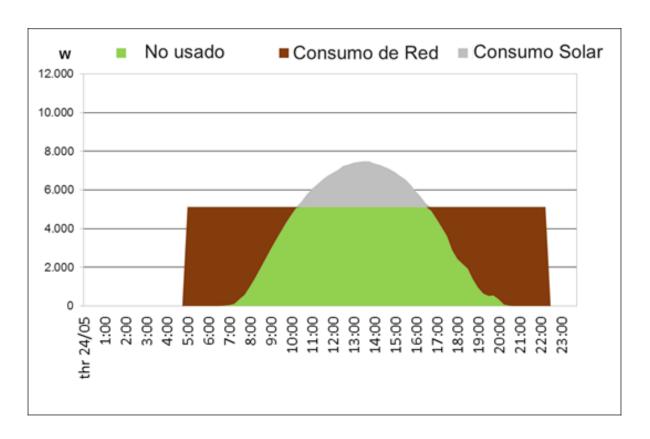


Gráfico de radiación solar, mayor potencia de paneles, más horas de funcionamiento

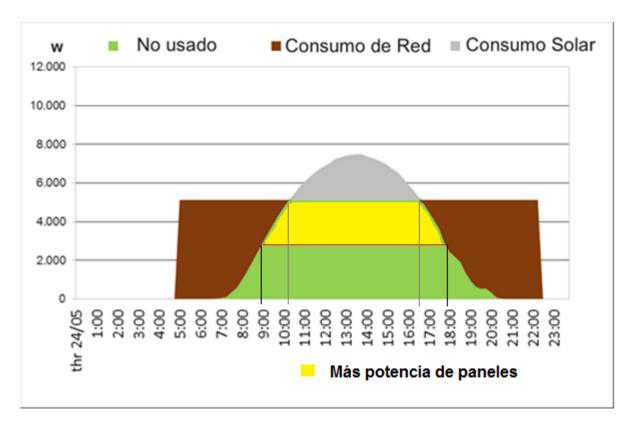


Gráfico de radiación solar aislada

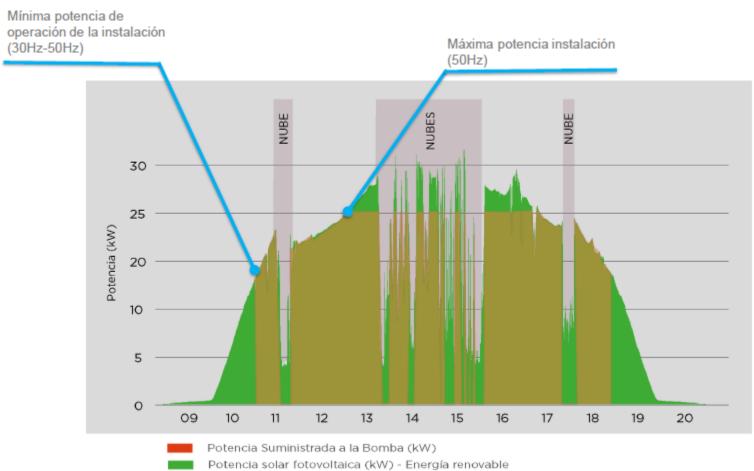
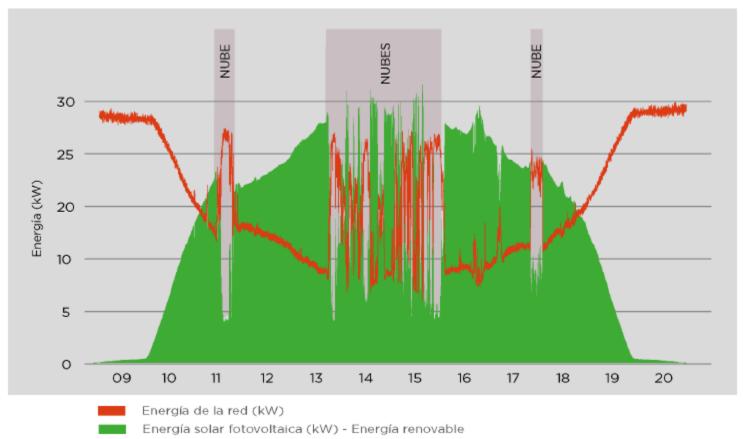
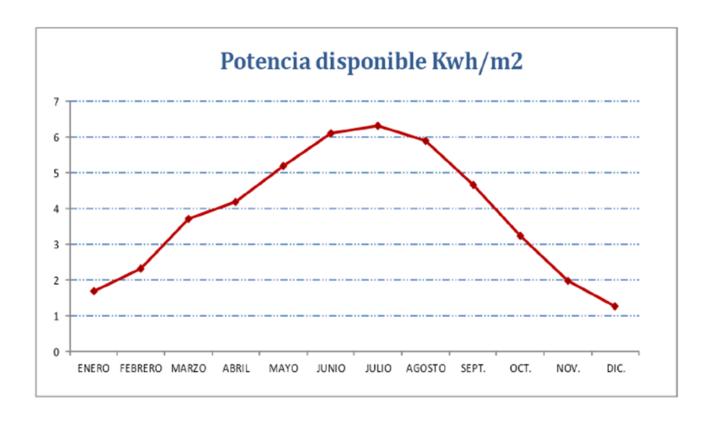



Gráfico de radiación solar con hibridación



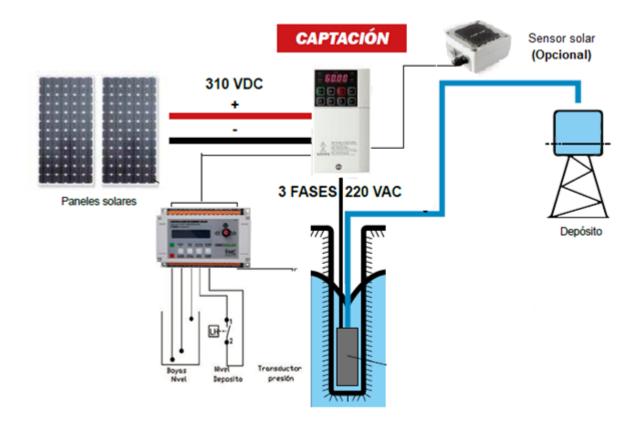
Los meses de mayor radiación coinciden con los de mayor necesidad de agua

Solución VMC Solar

Modos de funcionamiento

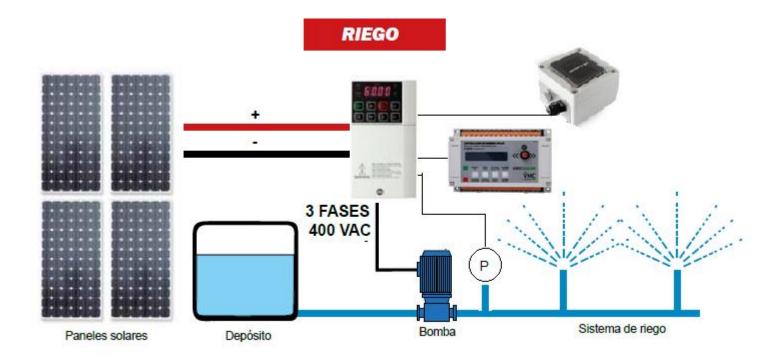
- 1- Básico (Red aislada).
- 2- Básico (Red aislada) radiación solar y niveles.
- 3- Red y paneles (Red no aislada).

1- Funcionamiento básico (Red aislada).



2- Básico (Red aislada) radiación solar y niveles.

Recomendación, control nivel bomba sumergida a través de sondas



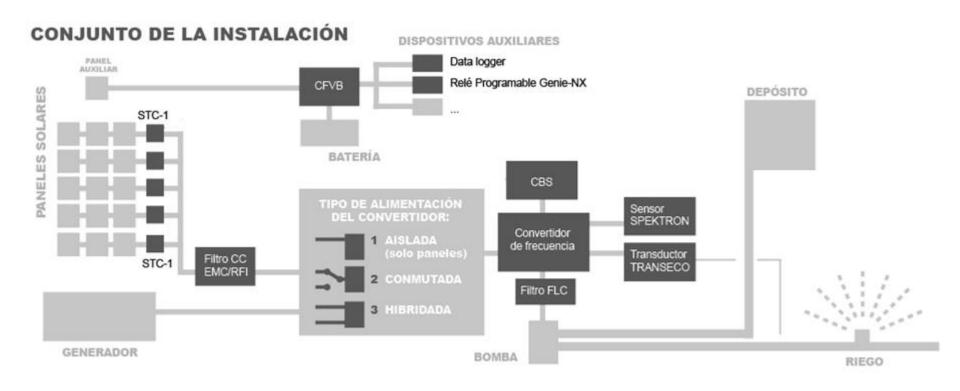
2- Básico (Red aislada) radiación solar y niveles.

Equipos con control de puesta en marcha por radiación solar y control de presión

4- Hibridación paneles y grupo

Configuración del campo solar

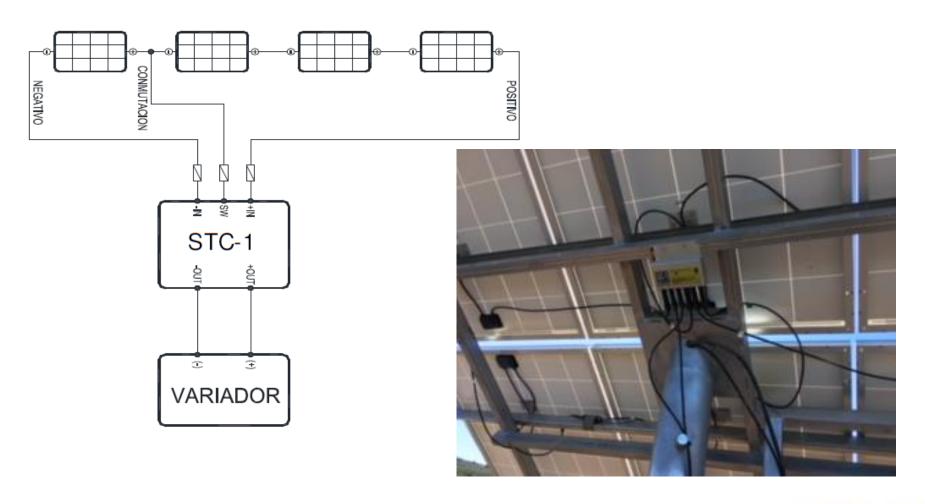
El dispositivo Strings Control (STC) permiten la optimización del campo solar al poder conectar/desconectar una parte de los módulos solares conectados en serie (strings) adecuando el campo solar a la mejor tensión de trabajo, a su vez impide que se supere la máxima tensión permitida en los variadores de velocidad:


- Optimización del dimensionado del campo solar
- Protección de los variadores de frecuencia contra sobre-tensiones
- Mejora de las maniobras de paro/arranque

Conjunto de la instalación

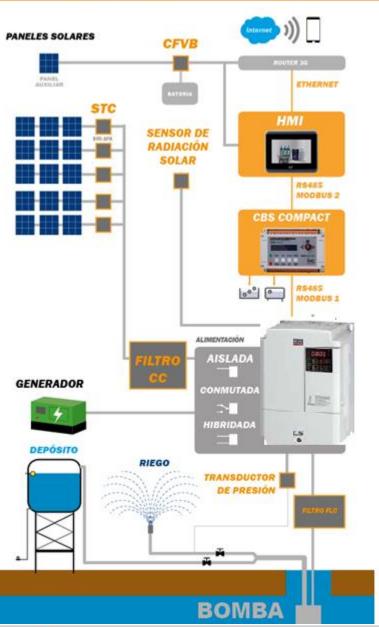
STC-1 230V

STC-1 400V



Conexionado control de un string STC-1

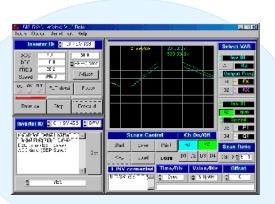
Integrados los diodos de polarización


PANELES SOLARES

Características CBS

Dispositivos auxiliares

- Comunicación con HMI
- Datalogger

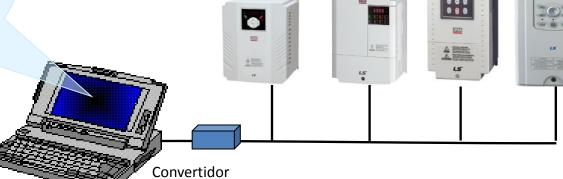


Solución VMC Solar

Programación de los equipos con DriveView 7

Comunicación RS-485, LS BUS o Modbus-RTU

Entorno Windows


Monitorización y programación

Osciloscópio

Long. Max.: 1,2 km

Vel. Com.: 1.200 ~ 19.200 bps

RS-232/485

Solución VMC Solar

Aplicaciones

- Riego agrícola
- Suministro de agua en zonas rurales
- Extracción de agua subterránea para consumo humano
- Tratamiento de aguas residuales

Ámbitos

- Sustitución de generadores de gasoil
- Zonas sin suministro eléctrico o con redes débiles
- Instalaciones con elevados costes energéticos
- Instalaciones para consumos temporales

Solución VMC Solar

Los variadores de velocidad en las estrategias de eficiencia y ahorro aportan:

- Eficiencia energética:
 - Control del caudal y velocidad de giro
 - Disminución de la potencia requerida
 - Mejora del rendimiento motor/bomba
 - Mejora en las maniobras arranque/paro
- Ahorro energético:
 - Disminución de la energía consumida
 - Alargan la vida útil de la instalación

Las prestaciones de los variadores de velocidad permiten un <u>rápido retorno de la inversión</u>

Gracias por su atención

Preguntas y comentarios

Más información en www.vmc.es

