
Help Gemnis Studio Standard
Release 11.7.1.0 Date 18/04/2018

Summary

1 Introduction..4
2 General characteristics..4
3 Symbols, application limits and limits of liability..5
3.1 Graphic symbols and terms used in this manual...5
3.2 Application limits...5
3.3 Prerequisites..5
3.4 Intended use..6
3.5 User's responsibility...6
3.6 Management of damaged or faulty products ...7
3.7 Validation and periodic tests...7
3.8 Directives and standards...7
3.9 Limits of liability...8
4 Gemnis line modules...9
4.1 Introduction...9
4.2 General hardware characteristics..9
4.3 Detection principles of external inputs and faults...11
4.3.1 General principles for external fault detection..11
4.3.2 Safety devices..13
4.3.3 Sensors...13
4.4 Modules state..14
4.4.1 POWER-ON State. ...14
4.4.2 START State. ..14
4.4.3 SET State..15
4.4.4 RUN State...15
4.4.5 ERROR State...15
4.5 Module state display by P1 and P2 status LEDs ..15
4.6 List of products..16
4.6.1 USB Port...17
5 Gemnis Studio...17
5.1 Prerequisites for performing of Gemnis Studio...17
5.2 Software version..18
5.3 Introduction...18
5.4 Tools Menu..19
5.4.1 General options..19
5.4.2 Programming by rows of one or more modules..21
5.4.3 Extracting a program from a module...21
5.5 Modules Menu..21
5.6 Projects Menu...22
5.6.1 Project Tab...23
5.6.2 Application program and digital signature...24
5.6.3 Password..26
5.6.3.1 Protection Password for the module...26
5.6.3.2 Password protection of the project file...27
5.6.3.3 Password protection also to project view...27
5.6.4 Migration of programmes..27
5.7 User Program Tab..28

Page 1

5.7.1 The Desktop. ...29
5.7.2 Sensors...33
5.7.2.1 S1E Sensor...40
5.7.2.2 S2ED Sensor...41
5.7.2.3 S1C Sensor ..42
5.7.2.4 S2CI Sensor..43
5.7.2.5 S2CD Sensor...44
5.7.2.6 SSM Sensor..45
5.7.2.7 STHC Sensor...46
5.7.2.8 STHA Sensor..48
5.7.2.9 SSE8 Sensor...49
5.7.2.10 SPE3 Sensor...50
5.7.2.11 SUSB Sensor...51
5.7.2.12 STIN Sensor..52
5.7.2.13 SAN1 Sensor ...54
5.7.2.14 SAN3 Sensor ...57
5.7.2.15 SSP2 Sensor...59
5.7.2.16 SSP4 Sensor...63
5.7.3 Functional blocks...66
5.7.3.1 Functional block AND..69
5.7.3.2 Functional block OR...69
5.7.3.3 Functional block XOR...70
5.7.3.4 Functional block NAND..70
5.7.3.5 Functional block NOR..71
5.7.3.6 Functional block NXOR..71
5.7.3.7 Functional block NOT..72
5.7.3.8 Functional block TRUE...72
5.7.3.9 Functional block FALSE..72
5.7.3.10 Functional block SET/RESET...73
5.7.3.11 Functional block MEM...73
5.7.3.12 Functional block START...74
5.7.3.13 Functional block POWER ON...76
5.7.3.14 Functional block TRIGGER ...76
5.7.3.15 Functional block DELAY...77
5.7.3.16 Functional block FILTER ..78
5.7.3.17 Functional block PULSE..78
5.7.3.18 Functional block CLOCK...79
5.7.3.19 Functional block ERROR...80
5.7.3.20 Functional block MESSAGE..82
5.7.3.21 Functional block EQU/GEQ/LEQ..83
5.7.3.22 Functional block COUNTER..84
5.7.3.23 Functional block LKTBL..84
5.7.3.24 Functional block LDC (LOCK DOOR CONTROL)...86
5.7.3.25 Functional Block WAVE..90
5.7.3.26 Functional Block MUTE2..90
5.7.3.27 Functional Block EDM..92
5.7.3.28 Functional Block SERIAL...94
5.7.4 Outputs..98
5.7.4.1 Safety Outputs...98
5.7.4.2 Signal outputs (unsafe)..99
5.7.5 Connectors...100
5.7.5.1 Graphic format "minimal"...101

Page 2

5.7.5.2 "Soft" graphic format..101
5.7.5.3 Connector controlled by User Dump...102
5.7.6 Other items..103
5.7.6.1 Note...103
5.7.6.2 Labels...104
5.7.6.3 Display...105
5.7.7 Simulation..109
5.7.7.1 Time in simulation...110
5.7.7.2 Start conditions and special states of sensors...110
5.7.7.3 Simulated ERROR conditions...111
5.8 Connections Tab..111
5.9 Messages Tab..112
5.10 Monitor..112
5.10.1 Execution state control within the module..114
5.11 Prints...116
5.11.1 Validation Report ..116
5.11.2 User Program Report...116
6 System commands...117
6.1 Introduction...117
6.1.1 System Commands format and limitations of use...118
6.1.2 Commands executable in RUN state..118
6.1.3 Commands executable in SET state...118
6.1.4 Commands executable in ERROR state..118
6.2 System Commands list...119
6.2.1 P00 Command ...119
6.2.2 P01 Command ...119
6.2.3 P03 Command..119
6.2.4 P04 Command ...119
6.2.5 P06 Command ...119
6.2.6 P07 Command (UserDump)...120
6.3 Writing data into the module..120
6.3.1 WD Command..121
6.3.2 W? Command..121
6.3.3 WK Command..121
6.3.4 WE Command..122
6.3.5 Example of transaction..122
7 Support...122
7.1 Website...122
7.2 Technical support..122
7.3 Making of pre-programmed modules, series CS MF..123

Page 3

1 Introduction

Thank you for choosing a product of Pizzato Elettrica Gemnis series. This manual has been developed with
the aim to introduce you to the features and details of the programming of this modern and
comprehensive family of programmable safety modules.

If you would like more information or if the information you sought were not present in this manual you
can connect to the website www.gemnis.com or contact the support service (see Support).

2 General characteristics

A Gemnis series module is a programmable safety device that allows you to perform multiple safety
functions at the same time. This product has been specifically developed to meet the needs of
manufacturers of machinery having a medium/low number of safety functions. These modules are able to
manage minimum applications comparable approximately to the ones performed by 3/4 traditional
electromechanical safety modules up to circuits having a few dozen inputs. Since this family of products
provides several combinations, in case of doubt please contact support.
These modules are able to manage inputs coming from all of the following types of safety devices:

· Mechanical safety switches
· Safety switches with solenoid for locking doors
· Safety magnetic switches
· Safety light barriers (category 4)
· Safety sensors
· Mushroom pushbuttons for emergency stops
· Rope switches for emergency stops
· Safety mats or safety edges with 4 wires technology
· Category IIIA or IIIC two hand controls
· Safety selectors
· Enabling three states devices

They also have internal capabilities that allow to carry out also:
· Safety timing
· Detection of different types of failures of safety devices or their wirings
· Check temperature limits internal to the module

Finally Gemnis series modules are able to:
· Manage up to eight electronic safety outputs or up to four relay outputs
· Manage many signal outputs (unsafe)
· Perform communications of the state of the module and data settings via the built-in USB port, or

through special communication boards

Safety modules project Gemnis are able to realize safety circuits up to SIL 3 classification according to EN
ISO 62061, PLe and Category 4 according to EN ISO 13849.

Page 4

http://www.gemnis.com/

3 Symbols, application limits and limits of liability

3.1 Graphic symbols and terms used in this manual
This manual contains some graphic symbols whose meaning is as follows:

 This symbol indicates that there are very important information or requirements for safety. Failure to
follow this indications may represent a serious danger to users of machinery.

 This symbol indicates additional information useful for a better understanding of what was reported.

Text This formatting indicates a button or a menu item of the software Gemnis Studio

Terms See

Functional blocks Functional blocks

Connectors Connectors

Safety devices Safety devices

MTTFd (Mean Time To dangerous Failure) See standards EN ISO 13849, EN ISO 62061

PFHd (Probability of dangerous Failure per Hour) See standards EN ISO 13849, EN ISO 62061

PL (Performance Level) See EN ISO 13849

Projects Projects Menu

Application Program Application program and digital signature

Sensors Sensors and Sensors List

SIL (Safety Integrity Level) See EN ISO 62061

SILCL (Safety Integrity Level Claim Limit) See EN ISO 62061

Module state State of the modules

3.2 Application limits
 A Gemnis safety module can be used to create safety circuits up to SIL 3 according to EN ISO 62061 or

PLe according by EN ISO 13849. The achievement of a specific safety level for a given circuit is not only
determined by the module, but also by external components connected to it, by the circuit structure, and
by a number of additional requirements as required by the standards mentioned above.

3.3 Prerequisites
 In order to create a program correctly, intended for a Gemnis series module to carry out safety

functions, a variety of skills is required, in particular:
· The knowledge of the used module and its application limits as prescribed in its instruction manual,

as well as knowledge of devices applied to it (switches, etc.) and their limits.
· Knowledge of configuration software (Gemnis Studio) and the requirements set out in this manual.
· Knowledge of European Directives applicable to machinery on which you will install the safety circuit

governed by the module and consequently the knowledge of specific standards necessary to make

Page 5

the risk analysis of the machinery, and standards needed to select the safety measures designed to
prevent or mitigate the risks identified.

The lack of knowledge of the limitations of devices employed or non-compliance with regulatory
requirements can lead to develop software not suitable for the application and therefore dangerous to
the operator of the machine.

3.4 Intended use
 Safety modules Gemnis series have been developed to carry out their functions in industrial

applications that are in compliance with EN ISO 13849 or EN ISO 62061. Any other use is excluded.

 This products are intended to be electrically connected to devices of the machinery and, according to
the developed program, activate electrical outputs. The execution of these functions requires that the
module has been properly installed and programmed, keeping in mind the instructions in this manual,
the instructions manual of the module and all related components.

 Safe state of Gemnis series modules is with safety outputs open.

3.5 User's responsibility
The programmer operates in the configuration of the module by:

· defining the type of external components (the "sensors") connected to the module
· creating paths (the "connections") that the information gathered from sensors make to be

processed by internal logic ("functional blocks")
· selecting the outputs of the module (the “outputs”) which will be activated.

 The area of responsibility of Pizzato Elettrica in the programming process is only about the functions
performed by individual procedures or functions performed by sensors, functional blocks and exits. It is
entirely the responsibility of the user the choice, parameterization and interconnection of these
procedures.

 Knowledge of machinery by experienced operators can bring, in the risk analysis phase, to exclude
certain types of faults. It is recalled that the liability for fault exclusion falls entirely on the machine's
manufacturer.

 During the development of a program using Gemnis studio are possible multiple configuration
options ("parameterization "), some of which have default values set by Pizzato Elettrica according to
average use machinery manufacturers. Some examples, not exhaustive, of these values can be the
maximum times of contemporaneity, contacts types, etc. These defaults values may be incorrect for
certain types of machinery and it is the responsibility of the manufacturer of the machinery to check and
if necessary change them.

 Programs developed by Gemnis Studio can detect a significant number of failures of external devices
connected to the module (electrical, mechanical and functional failures) but the opportunity and the
responsibility to decide whether to detect them or not is delegated to the developer of the software
because it is not possible to pre-determine how failures should be managed, as it is not possible to pre-
determine fault exclusions or functional failure that exclusively result, case by case, from the analysis of
each machinery.

Page 6

 Pizzato Elettrica releases the license for using Gemnis Studio or other related software for the
configuration of safety modules which belong of the Gemnis series. The graphical interface of Gemnis
Studio is mediated and controlled by other software (e.g. the "operating system" but not only) that
govern the computer on which Gemnis Studio is installed. Sometimes, even without the user's
knowledge, for example for those programs called "Virus", more software interact with the GUI and the
memory of the computer on which you installed Gemnis Studio. It follows that Pizzato Elettrica can not
guarantee the correct computer graphic representation of the information in the module and cannot
even prevent third party programs to alter the structure of the data of Gemnis Studio on the computer
and then prevent them from providing incorrect information about programming that you are
performing. For this reason, it is always necessary for the user to perform tests with the programmed
modules to verify that their behavior is exactly what it is expected, this test must be done before putting
into service of machinery that uses them (see also Validation and periodic tests).

3.6 Management of damaged or faulty products

 If the goods have been visibly damaged during transportation or installation you mustn’t use them,
not even for a test.

 If after installing the module does not switch on or indicates an internal failure or has an unexpected
behaviour it must be disconnected from the machine.

 Repairs or modifications on the safety modules are prohibited. Removing or breaking the security seal
invalidates the warranty on the product.

3.7 Validation and periodic tests
It is good practice and obligation according to norms, to make initial and periodic testing of safety devices
on machinery. The fact that failure will not occur for a long period does not warrant that the safety circuit
cannot fail. Think of the case of a circuit in which a push button for emergency stops has been wrongly
wired such that the internal contact (normally closed) is not mechanically connected to the button in a
correct way. Such a device may remain unused for years and make machinery look like as fully functional,
even if there is a dangerous failure since the construction of machinery.

 All programs developed by Gemnis Studio must be tested and validated on the machine before
putting them in service. Testing and validation should also be repeated after each modification of the
safety configuration of machinery both in case the change happening in the software that is loaded into
the module whether it is done in the "hardware" part of the machine. Please note that many industrial
components with the same function have variations in electrical parameters (contacts rebounds,
response times) and safety parameters (PFHd, B10d).

 It is necessary that all external devices connected to the safety module (buttons, sensors, barriers,
etc.) are actuated or tested at least once a year (routine tests) in order to ensure that the probability of
dangerous failure, which is a function of time, can increase up to downgrade the safety circuit SIL or PL.

3.8 Directives and standards
The manufacturer who wishes to install a safety module series Gemnis to oversee all or some safety
functions of machinery is responsible for verifying the conformity of all European directives applicable to
machinery before its commissioning.

Page 7

Machinery directive
Low voltage Directive
EMC Directive

To apply the CE marking on machinery, the manufacturer may decide to use harmonized EN standards
appropriate to the machinery. We remind some of the major standards used for the analysis of risks and
safety of machinery:

Standard Content

IEC 61508 Functional safety of electrical, electronic and programmable systems

EN ISO 13849-1 Safety of machinery - parts of control systems relating to safety

EN ISO 13850 Safety of machinery - emergency stop

EN ISO 12100 Safety of machinery - basic concepts

EN 62061 Safety of machinery - functional safety of electrical, electronic and
programmable systems

EN 60204 Safety of machinery - electrical equipment

EN 61131 Programmable controllers

EN ISO 14119 Safety of machinery - interlocking devices associated with guards

EN 574 Safety of machinery – Two hand controls

Please note that the manufacturer of the machinery who wants to certify the safety degree of a protected
hazardous machinery, should make the analyses required by the safety standards on all different parts of
the safety circuit including therefore also detecting devices, wirings, actuator devices, and not to limit the
analysis to the characteristics of the safety module only.

3.9 Limits of liability
This manual has been prepared and verified to the best of our knowledge. This does not imply that cannot
exist inaccuracies or errors or that the text cannot be improved. Your comments are welcome and will be
valued. In the site www.gemnis.com you can check if there is an updated version of this manual and tools
are available to provide suggestions or reports of errors. The registration in the website also allows us to
inform you in case of software versions with new features, improvements, bug resolutions or new versions
of the hardware, are released.

Pizzato Elettrica provides this documentation only to customers which purchase modules of Gemnis series
but this does not imply that Pizzato Elettrica has obligations to provide further documentation or support
or new software tools in addition to the license of this version of Gemnis Studio.

Pizzato Elettrica reserves the right to modify and edit at any time, without notice and at its discretion, this
manual and all data contained.

All the information contained in this document does not imply that Pizzato Elettrica assume responsibilities
or liabilities other than as provided in the Sales Terms and Conditions indicated in the Pizzato Elettrica
General Catalogue. Any further liability must be confirmed in writing by Pizzato Elettrica.

Page 8

http://www.gemnis.com/

4 Gemnis line modules

4.1 Introduction
Project Gemnis modules are born with high flexibility skills, even regarding the hardware side.
These products are composed of a variety of electronic boards that are sold in different combinations but
always contained in a single housing, and with a single product code.
This project, thanks to its modularity, permits flexibility also for the hardware level, in fact there’s now the
possibility to create ad hoc boards to customer specifications. Many companies in fact need to convert the
dedicated hardware of their machine to hardware in accordance with new regulations. To perform this
conversion a lot of resources are needed, profound knowledge of new regulations, important certification
costs. If the customer does not find the correct electronic board among those already available can ask for
an evaluation to Pizzato Elettrica having the certainty that the development (and related costs) does not
cover the entire system but the single board in question.

4.2 General hardware characteristics
Gemnis series modules have a redundant and self-controlled structure. They are controlled by a pair of
processors that run in parallel the Application Program and constantly monitor their functioning and
system integrity.

Hardware Structure.
Each module comes in a single enclosure with the minimum width necessary to hold the boards that form
the module. Enclosures ranges from 45 to 180 mm wide. The customer must therefore not worry about
wiring different parts.

The modules internally may be composed by five different types of boards:
· "P" type boards (or "Power") with safety outputs, power inputs and sometimes some Input-Output

terminals. Some boards of this type can be connected internally to other boards, "R" type, with just
relays.

·"IO" type boards (or "Input/Output") with inputs, pulsed outputs for monitoring devices (Test
outputs), not safe output.

· "B" type boards (or "Backplane"), equipped with microprocessor control and 2, 3 or 4 slots.
· "C" type boards (or "Com") to transmit data from the outside world.
· "R" type boards (or "Relay") featuring only Relay groups, internally connected to a boards of type "P".

A safety module is packaged by combining one "Power" board and one or more "Input/Output" boards on a
"Backplane " one. Depending on the "Power" board, “R” type boards can be added or not (and they does
not occupy backplane slots). The module can optionally have also a "Com" board for communications.

The layout of connection clamps on two rows on each side of the product allows the halving of space
compared to similar products on the market. All the terminals of the modules are plug-in type and the
rational arrangement of the terminals with the Test outputs and related inputs terminals allows a simplified
wiring. The clamps may be requested in spring-type connection.

Power Supply.
The structure of modules provides two power supply ports, dedicated respectively to the module itself
(terminals A1-A2) and to safety outputs (terminals 0-24V). The two power supply circuits are completely
decoupled and allow, if necessary, to manage different grounds between the two circuits. The main power
supply provides energy to the control logics and, through an internal branch (see figure), to unsafe outputs
("O" type outputs) and Test signals ("T" type outputs). In particular, this branch is equipped with an
electronic circuit overload detection, visible to control processors, function that allows the detection of
short circuit to ground.

Page 9

Clamps and connections.
The clamps of the module are named according to their function. There are several different basic
functions:

· Clamps “A” or “Supply”, dedicated to the power supply of the module logic. In some modules may
exist more than one clamp A, for example when the module contains cards with decoupled power
supplies. The odd numered clamps (A1, A3, A5, etc..) are related to the positive supply, while the
even numbered clamps (A2, A4, A6, etc..) are related to the respective mass.

· Clamps "I" or "Input" type, dedicated to the detection of input signals. A terminal type "I" in the
module has a name such as "Ix" (e.g. "I11") where "x" uniquely identifies the clamp. The numbering
of clamps is made according to the topology of the module, and then may not be consecutive.

· Clamp type "J" dedicated to the detection of input signals but decoupled (through photo couplers)
with respect to the mass of the ground A2 of the module. For its ground clamp refer to the
documentation of the module. A clamp "J" in the module has a name like "Jx" (eg "J51") where "x"
uniquely identifies the clamp. The clamps numbering is done based on the topology of the module
and therefore can’t be consecutive. Please pay attention that the test signals of the module, being
generated with respect to the ground clamp A2, can’t be closed on the terminals "J" if you do not
put in connection the respective ground with A2.

· Clamps “C” or “Current”. They are clamps specific to certain modules, dedicated to the detection of
analog signals of type 4-20 mA.

· Clamps “F” or “Frequency”. They are clamps specific to certain modules, dedicated to the detection
of signals from devices with digital out with frequency up to 4 KHz.

· Clamps "T" or "Test" type, i.e. the output control signals, which must be brought to the sensors
(e.g. switch), and then come back in the module inputs. A “T” type clamp has a name like "Tx" (e.g.
"T21") where "x" uniquely identifies the clamp. The numbering of the T-type clamp is made
according to the topology of the module, and then may not always be consecutive. The clamps of
type T are always present in pairs with consecutive odd and even index (e.g. "T21", "T22") for
generating pulsed signal in phase opposition.

· Clamps "O" or "Output" type, the not safe outputs of the module. These clamps are identified by a
name like "Ox" (e.g. "O01") where "x" "uniquely identifies the clamp.

· Clamps "OS" or "Output Safe" type output, the safe outputs of the module. In the case of electronic
outputs clamps are identified like "OSx" (e.g. "OS1") while in the case of relay outputs the clamps
are in pairs and are called "x3-x4" (e.g. "13-14").

Some modules are equipped with special features (e.g. communication boards) and in this case the
nomenclature of clamps or other ports is dedicated. See the device instructions.
Programmable modules (modules which start with "CS MP" codes) are equipped with a USB port on the
front. This port is used by the program "Gemnis Studio" to program the module and to detect its working
state.

Page 10

Status signalling.
Each module has several green LED for signalling system status. The "PWR" led gives an indication of the
presence of the main power supply (terminals A1-A2) of the module. The "Ixx" LEDs show the status signals
on its input clamps. These two types of LEDs are not controlled by processors. Two LEDs (P1 and P2, both
red/blue colors) are controlled directly by the two processors to highlight the status of the module and to
provide information relating to identified faults. Some boards are equipped with dedicated LEDs. Please see
the documentation.

Response time.
The firmware contained in these modules has a cycle time of 10 msec. Execution of a safety function
requires a minimum of two cycles, one for detection of inputs and the second for the execution of the
Application Program (including the setting of outputs). Average execution time of a function is 20 msec. In
general the maximum response time of the system is always less than 30 msec. Some functions can also be
performed in faster average times depending on the type of input signal and if using electronic safe
outputs. Filtering on input signals can delay the average response time of the system.

Inputs.
Cycle time equal to 10 msec is also the inferior temporal limit for detecting input signals. A signal, wired to
an input, with a duration of less than 10 msec may not be detected.
The inputs are also filtered against the voltage micro-interruptions up to a maximum length of 0.5 msec.

4.3 Detection principles of external inputs and faults
The main types of fault that may occur in electrical devices external to the module are:

· Electrical failures: disconnecting wires, short-circuiting between wires, short-circuiting to ground,
short circuit to power supply. An electrical fault inside the external devices led also to this type of
failure.

· Functional failure: mechanical breaks or parts disconnection such that it retains the integrity of
electrical circuit but not the integrity of the protective function. For example, the loosening of an
NC electrical contact from an emergency stop mushroom push button.

To perform the safety functions and surveillance from faults listed above, in this family of modules are
adopted the following general principles.

4.3.1 General principles for external fault detection
From a physical point of view it is assumed that the presence of an electrical signal ("1") is a safe signal
(necessary but not sufficient condition) and the lack of an electrical signal ("0") is not. This assumptions
prevents that a wiring disconnection or shorting a conductor to ground can be rated as a safe signal (these
two events are the most common failure modes) while not excluding the case of a short circuit between
two conductors or towards the power supply.

As a general principle it is assumed that it is always needed more than a single physical input (typically two)
for the validation of a safety function, at least for a function having the maximum safety level. This
highlights the functional failures, if not immediately at least on the first request, and by coherence analysis
of the two signals even single failures towards the power supply.
From these two assumptions it follows that in general is always needed the presence of at least one
electrical signal to activate a safety function. For example, this means that controlling a magnetic sensor at
maximum safety level must be executed through the analysis of at least two electrical signals of which at
least one is always present, i.e. the sensor contacts can be of type 2NC or 1NC + 1NO but not 2NO (with
closed protection).

Page 11

To evaluate electromechanical devices with electrical contacts in general it used the principle of creating
"electrical loop" controlled by the module. The electrical contact is connected to a signal source created by
the module (Test signal) and to an input clamp. The Test signal is sent into the device's contact and
detected from the input stage. Evaluating the consistency between the Test signal and the value read, the
system is able to detect the passage of a dynamic signal through the contact and therefore to exclude even
short-circuiting persistent towards fixed tension. To discriminate the short-circuiting between two
conductors it is used the principle of linking them to two different Test signals sources, typically in phase
opposition, such that it is possible to identify how the signal sent differs from the read one. For this reason
the test signals clamps are always in pairs (odd clamp, even clamp) with signal in phase opposition.
To evaluate the electronic output devices in general it is not possible to create electrical loop. Most of the
safety devices are equipped with dual electronic outputs with independent verification of outgoing signals
(e.g. optical barriers in category 4 with OSSD type outputs) such that it is sufficient to verify the coherence
of the input signals. Other devices have only single electronic outputs and, individually taken, they are not
suitable to perform safety functions. However, the use of a variety of these devices, through temporal
verification functions and sequential consistency, would permit their use in safety function. For example
the use of normal optical sensors (in the sense that they are not safety sensors) in muting functions.

About short-circuit between different inputs.
Gemnis series modules adopt various strategies to detect failures. A possible fault is the external short
circuit between any two input signals connected to any two Test signals. This failure is detected by the
module through the analysis of Test signals generated and detected input signals. When an input signal is
present but its Test signal is off we are in the presence of a short circuit to power supply or toward other
Test signals. So any short circuit between wires of a device connected to two inputs and two opposite Test
signal is detected in a short time. On the other hand in a module are connected many external devices and
Test signals are often reused by them. A particularly unlucky case of failure occurs when two different
devices that use the same test signals, have a short circuit between wirings after the devices themselves
(between the device and the inputs). A dual-channel device is resistant to this fault type as failure would be
detected on first use of one of the two devices. Instead, a single-channel device could be completely
bypassed by this type of failure that basically creates an "electric OR" between the two devices. To work
around this failure mode it is recommended the use of different test signals for single-channel devices that
have the wires that make the same route or physical separation of the wirings of such devices in order to
exclude this fault.
Also, all Test patterns are repeated in pairs (odd index or even index) in phase opposition. So all even-
numbered Test signals and all odd-numbered Test signals behave the same way and it is not immediately
possible to detect a short circuit between two inputs connected to test signals of the same type. For
example if two single-channel contacts are both linked to odd Test signals, a short circuit between the two
inputs is not immediately detectable. To work around this type of failure Gemnis series modules introduce
cyclical changes in all Test signals. Alterations occurs in sequence and the time to scan all Test signals is
about 3 seconds, because it have been evaluated that breakdowns between different devices, or short
circuits between the wires of different devices, are faults much less frequent of ones that may occur in
individual devices.
Finally, note how the concept of function and failure is related to the type of device in question. For
example, consider the comparison between an emergency mushroom with 2 NC contacts and a safety mat
with 4-wire technology. Both devices have the same electrical connections, but if the first normal operation
provides for the opening of the contacts and a fault is for example a short circuit between the channels, in
the second the situation is diametrically opposed because the short-circuit between channels is admitted in
normal operation while the disconnection of one or both of the wires is a failure.

To locate a fault we understand therefore how it is necessary not only to evaluate the electrical nature
signals but also having some information about the physical nature of the device. For this reason it is
necessary to clarify and differentiate two terms that are often used in this document: Safety Devices and
sensors.

Page 12

4.3.2 Safety devices
In this document the term "Safety Devices" means devices external to the module or, more generally, the
systems of external devices that are assigned to the control of the dangerous parts of the machine and that
are physically connected to the module clamps. Examples of safety devices are mushroom push button,
safety switches, emergency barriers. Safety devices are also groups of devices, for example a pair of
switches or two hand controls, which functionally serve to perform a single safety function for example
safety control for one door. So, the term "Safety Device" is not always equivalent to a single physical object,
but more generally identifies a system of devices designed to detect more signals that allow to carry out
one safety function.
Also a group of cascading electrically connected devices should be considered as one Safety Device. For
example, a group of emergency push-buttons connected in series, or a group of RFID sensors connected in
cascade are one safety device. The module alone is not able to differentiate the number of connected
devices as the circuits are electrically indistinguishable.
Safety devices are typically connected to the clamps of the module, in general are connected to clamps of
test signals and digital input clamps. A safety device may not use test signals (e.g. barriers) or use them in
dedicated way (i.e. safety mats) or use them in common with other devices. A safety device uses at least
one entrance and inputs of a safety device are not shared with other devices.

The module must process the received data from digital inputs in comparison with data of test signals to
identify the status of operation of the device and any malfunction, but, to do this, requires further
information relating to the physical nature of the device and it is for this reason that in the software was
introduced the concept of Sensor.

4.3.3 Sensors
The sensors are part of the Application Program that serves to identify which type of Safety Device is
physically connected to the clamps of the module. The sensors are chosen by the user within a default list
depending on the nature of electrical safety device and are characterized by the user with all the additional
information needed to fully define the behavior of the Safety Device.

The sensors are the first layer of software within a Gemnis module. At each execution cycle of Application
Program, sensors analyze signals coming from outside the module to identify the status of Safety Devices
and provide such data to the functional blocks that process them to end with the setting of outputs.

Page 13

4.4 Modules state
The safety module, since its power on, can assume several States that characterize its functioning. The
transition between States can be automatic or the result of internal processes or external signals.

4.4.1 POWER-ON State.
This is the State of on module at startup or after a reset. In this state
the module is in safe state, with all safety outputs open. During this
phase it waits for approximately 1 second to check if in the USB port
there is a demand for attention. If such request comes it enters in SET
State. Otherwise, it verifies if the module is loaded with an
Application Program. Where it is not programmed the module enter
in SET state, otherwise START State.
During the POWER-ON the modules does not detect any errors.

4.4.2 START State.
This is the State that you have after a Power-On on a programmed
module without request on the USB port. In this state the module is
in safe state, with all safety outputs open. During this phase, the
module performs an internal global verification both for software
and hardware. If during the START phase the module detects an error
it immediately enter into ERROR State, otherwise goes into RUN
State.

Page 14

4.4.3 SET State.
In this state the module is in safe state. Depending on the access
level (password may be required) the module accepts query or set
commands, such as loading a program or otherwise. It is possible to
exit from SET State only through a physical shutdown of the module
or by using a reset command. In this case the module starts by
POWER-ON State (hot power-on).

4.4.4 RUN State.
In this state the module executes endlessly the Application Program,
it reads the inputs and set outputs, reads commands from
communication ports and, if enabled, writes responses. If the user
has the appropriate access level can invoke the restart of the
module.
Together with Application Program execution, module carries out on-
line system test. If during this phase a hardware failure is detected or
a software error is invoked the module enter in ERROR State.

4.4.5 ERROR State.
In this state the module is in safe state. If detected failure is
Hardware type, then you can reset module only through power
supply. If the system goes into ERROR state following a request by
the Application Program then the module can be reset through a
reset command. If it receives the reset command the module start
again form POWER-ON State.
Failures or errors that can bring a module in ERROR State are many
and very different. In particular you can have software errors and
hardware failures, which in turn can be detect internally or
externally to the module. Among the failures detected outside the
latter form we can distinguish between functional and electrical
fault.

4.5 Module state display by P1 and P2 status LEDs
When powered up the PWR LED turns on and the module begins from POWER-ON state.
If the module goes into SET state, P1 and P2 LEDs, controlled by processors, flash alternately in blue.
Otherwise, the module continues in START state and performs an internal self-diagnosis. In this phase the
two LEDs (P1, P2) remain lit up with red light for about 1 second. If the test ends without internal
anomalies, both LEDs will turn off and the module goes into RUN state and execute the Application
Program. If the start-up tests are not passed, the module goes into ERROR state and LEDs remain lit up with
red light to indicate the fault. Green LEDs for power and inputs of the module are not controlled by
processors and begin immediately to indicate the status of its inputs / outputs.

Page 15

When the module is in RUN mode and no faults are detected, the two LEDs (P1, P2) are off.
In the RUN mode, the module can detect the faults external to the module, for example due to short
circuits, or invalid inputs conditions.
Some failures are managed directly from the hardware module such as in the case of overload or
overheating. In this case the fault is highlighted by means of the blinking LED P1 and P2, with a specific
flashing sequence that starts with o single red flash followed by N flashes of blue color, where N indicates
the type of error detected (see table below).
Other faults are handled directly by the Application Program, typically faults on the Sensors. Depending on
the type of fault detected, the Application Program may require the module to place itself in ERROR state,
to highlight the anomaly, with a specific error code which can vary from 1 to 16. In this case the module
shows the error code N via a sequence of N blue flashes by LED P1 and P2.

Led
PWR

Led
P1 and P2

Possible cause of failure

Off Off No power supply, improper connections, wires cut, external fuses open.
Module failure.

Green Off Normal operation, RUN state.
Green Alternate

Blue
Normal operation, SET state.

Green Red Unrecoverable fault.
Recommended Action: Try to restart the module. If the problem continue send the module
to be repaired.

Green Red x 1
Blue x 1

Recoverable Fault: Overcurrent on in Tx or Ox outputs.
Recommended action: Disconnect the output signal (Ox) and Test output (Tx) to check if
there is an external short circuit.

Green Red x 1

Blue x 2

Recoverable Fault. Problem detected on OSx (shorted to ground or power supply or short
circuit between two OSx).
Recommended action: Verify the presence of power supply on clamps 0-24V.
Disconnect the safety outputs OSx and check for short circuits.

Green Red x 1
Blue x 3

Recoverable fault. Temperature of the module out of limits.
Recommended action: Return the module within the temperature limits allowed.

Green Red x 1
Blue x 4

Recovered fault. No power supply in clamps 24V-0V.
Recommended action: Verify the presence of power supply on the indicated clamps.

Green Blue x N Module entered into ERROR state at the request of Application Program.
Error Code N. Typically due to faulty conditions on the inputs (external short circuits, not
allowed states).
Recommended action: Disconnect the inputs to determine any short circuits. Check the
documentation associated with the project.

4.6 List of products
Currently are defined the following products:

Code Safe
inputs

Ix

Safe
Decoupled

Inputs
Jx

Inputs
4-20mA

Cx

Inputs in
Frequency

Fx

Test
outputs

Tx

Safe
outputs

OSx

Signal
outputs

Ox

Width
(mm)

CS MP201M0 8 - - - 8 3NO 4 45

CS MP202M0 16 - - - 4 4 PNP 4 45

CS MP203M0 12 - - - 4 3NO + 1NO 4 45

CS MP204M0 12 - - - 4 3NO 4 45

CS MP205M0 4 4 - 4 4 4 PNP 4 45

CS MP206M0 8 - - - 4 4 PNP 12 45

Page 16

CS MP207M0 4 - 2 - 4 4 PNP 4 45

CS MP208M0 16 - - - 4 8 PNP - 45

CS MP301M0 24 - - - 8 3NO 4 78

CS MP302M0 24 - - - 12 4 PNP 4 78

CS MP303M0 32 - - - 4 4 PNP 4 78

CS MP304M0 28 - - - 4 3NO + 1NO 4 78

CS MP305M0 24 - - - 4 4 PNP 12 78

CS MP306M0 20 - - - 4 3NO + 1NO 12 78

CS MP307M0 8 4 2 4 4 4 PNP 4 78

CS MP308M0 24 - - - 4 8 PNP 8 78

CS MP309M0 32 - - - 4 8 PNP - 78

CS MP401M0 40 - - - 4 4 PNP 12 90

CS MP402M0 32 - - - 12 8 PNP 8 90

CS MP403M0 40 - - - 4 8 PNP 8 90

All the products are equipped with USB port.
The list of products and boards may not be complete. Check the website www.gemnis.com to get updated
information.
The customer who wishes to create a module with a new combination of Inputs/Outputs should contact
the technical Office of Pizzato Elettrica.

4.6.1 USB Port
The USB port integrated in the module is used for programming and debugging the module by software
Gemnis Studio. Once a module is programmed, you can use the USB port for communication with a PC
installed on the machine and exchanging information relating to the state of the module. It is possible to
communicate with the module by setting the USB port on your computer to emulate a serial port (COM)
with the following parameters:
Speed: 9600 baud parity: N Data: 8 bit Stop: 1 bit Flow control: Xon/Xoff
For more information about the commands that the module accepts from USB see paragraph System
commands

5 Gemnis Studio
The program Gemnis Studio is a graphical development environment for creating, simulating and
debugging of programs suitable to be placed in the modules of Gemnis family. This software is released
under license to the user that want to develop these modules after registering on the website
www.gemnis.com. User registration is required to keep buyers informed on updates or notifications
regarding the products used.

5.1 Prerequisites for performing of Gemnis Studio
The program Gemnis Studio is designed to operate on a personal computer with the following minimum
requirements:
Operating system: Microsoft Windows XP + SP3, Microsoft Vista, Microsoft 7 or Microsoft 8.1 in which must
be installed framework .NET 3.5 or higher version and Microsoft Report Viewer. The framework .NET and
Microsoft Report Viewer, if not already installed, are automatically installed during the installation of
Gemnis Studio.
RAM memory: 512 MB
Disk space: 200 MB
USB connection: 1.0

Page 17

http://www.gemnis.com/
http://www.gemnis.com/

Minimum display recommended resolution: 1024 x 768 pixels.

5.2 Software version
The installed version of the software is visible in the menu ? → Info on Gemnis Studio

5.3 Introduction
Gemnis Studio is a software developed to allow a user to program a module belonging to Gemnis series.
This software has a graphical user interface to make visual, in a natural and intuitive way, the set of
operations that the Application Program will run once loaded into the module. Gemnis Studio also allows
us to equip the configuration information with supporting information and useful notes for the complete
understanding of the program. Finally, Gemnis Studio allows to perform debugging using the ability to
simulate the operation of a module or detect and graphically represent the status of a real running device.

Main menu.
Once started the program Gemnis Studio work environment is as follows:

The bar of the program indicates the version of the program and the program execution mode.
The first menu bar contains four drop-down menus that are:
Projects: the function of Gemnis Studio that allows the creation and management of program configuration
for the modules.
Modules: presents a list of Gemnis series modules currently being developed and their main features.
Tools: allows you to set some of the general characteristics of the Gemnis Studio software or the execution
of general operations.

Page 18

 ? : provides online help for the program and for additional data of Gemnis Studio. In particular, selecting
about Gemnis Studio it opens a form containing all data necessary for the request for assistance. If the
program is in "Demo" mode, some data, such as the code for assistance, will not be present.

5.4 Tools Menu
Allows you to set some of the General characteristics of the Gemnis Studio software or performing general
tasks

5.4.1 General options
Selecting Tools the first entry in the drop-down menu Option allows the choice of some general options for
the program:

Language.
Gemnis Studio is a software intended to operate in a variety of languages. From menù Tools -> Options ->
Language the selection is made from the drop-down box (see figure).

To complete the changing of the language of Gemnis Studio you have to restart of the program.

Paths (Working Directory) and Backup of projects.
Gemnis Studio saves by default all projects created in the directory "Gemnis" placed in the documents
folder for the user who installed the software on the machine. If you want to save the data of the program
in a different location, you can do it by indicating the new location by using the dedicated button within the
menu Tools → Options → Paths (see figure).

On the same tab you can set Gemnis Studio to perform an autosave whenever this project is loaded in the
module. The project is saved in a file with the same file-name of the project followed by the date of
compiling within the sub directory "\Backup" of Gemnis Studio folder. If you need to open a project from a
Backup file, please note that you must first rename the file with the name of the project, removing the part
of the date.

Page 19

The default colors.
You can customize some basic colors that are used in projects according to personal likings. These colors
will be applied to all projects displayed, although developed by other people.
The colors of connections during the simulation or Monitor phase can be set from Tools → Options →
Monitor . Similarly the default color of the note can be set from Tools → Options → Notes. In both cases to
complete the change of colors of Gemnis Studio you have to close and reopen any open projects.

More
The last tab set preferences regarding automatic updates and the visibility of the “What’s new” screen at
the startup of Gemnis Studio. Control product updates verify the presence in the network of a new version
and inform the user through a window that will explain the new update and how to obtain it.

Page 20

5.4.2 Programming by rows of one or more modules
Through the tab Tools → Sequential Modules Programming you can program one or more modules directly
from a Project File (see Projects Menu) without going through the graphical user interface of Gemnis
Studio. This option is useful for programming multiple modules directly in the production plants, without
necessarily access users to graphically design source files. Since this screen is active even if Gemnis Studio is
in Demo mode you can provide to a user or customer Gemnis Studio software and a project file protected
by password to allow them to program a module without necessarily downloading Gemnis Studio or see
the program source.

5.4.3 Extracting a program from a module
Through the Tools → Import program from the module it is possible to read from a module already
programmed the Application Program inside, and save it to a file. In case you lost the source files of the
project, in this way you can make Backup copies or load to other modules an identical program. The ability
to extract data from the module depends also on knowledge of the Password, if present, registered for the
protection of the Application Program.
Please note that the file extracted from a module doesn’t contain the information necessary for the
reconstruction of graphical programming user interface. Consequently, this file can only be used as a
backup copy or for loading the identical program in other modules.

5.5 Modules Menu
From menu item Modules → Show Modules you can view the list of Gemnis series modules currently
developed and their hardware features, such as the number of inputs, outputs, etc.

Visit our website www.gemnis.com to get the file with the updated list of modules. To update the list of
modules in Gemnis Studio, select the menu item Modules → Refresh Module List and select the file you
downloaded.

Page 21

http://www.gemnis.com/

5.6 Projects Menu
All the information you need to configure a module and to describe the activities is named "Project". Using
Gemnis Studio the user can build an Assembly of textual and graphics information that allow you to
describe and comment that will be performed when the program is installed on a Gemnis module. This
collection of information is saved in a single file with the name chosen for this project and the extension
"PZZKE". A file of type "PZZKE" is a project file.
When you start Studio Gemnis, to create a project you have just to select the drop-down menu named
Projects and then select the button New.

The window for creating a new project will compare. In this window you are requested to identify the
module for which you want to write the program, and then specify the name of the project.

Page 22

The selection of the module is an important moment for the creation of a project, because resources
represented within the project will be only the ones of the chosen module. The modules of the project
Gemnis are not expandable, so if you need a different module for the realization of the project, it would be
necessary to transfer what you created in a new project that is associated with the new module. Since
different modules may have different names and resources, transfer may not be immediate. For this
reason, before creating a new project, it is always recommended to perform an analysis of the resources
necessary for its realization.
The file with the project ("Test.PZZKE" in the example figure) will be saved in the selected Directory (see
Introduction).

Gemnis Studio is a multi project environment and it is therefore possible to work simultaneously on
multiple projects as well as you can keep active connections with multiple modules (see Monitor).

5.6.1 Project Tab
When a project has just been created it appears as a new window inside of Gemnis Studio.

Page 23

The project bar contains as a title, the project name ("Demo" in the image).
Inside the tab with the project there are four different sub-tabs: Project, User Program, Connections and
Messages .

The "Project " tab contains general data relating to the project. The data inside the box "Module Stored
Data" are part of the application program (see later) and that will be stored in the module. Other data are
part of the project and will not be stored in the module but will be stored in the project file.
Between data stored in the module, some of them are represented on a gray background to indicate that
they are not editable by the user. As you can see in the picture the "Project Code", the "Digital Sign", the
"Module Code" and the "Build On" data are not editable by the user.
The check "Program validated" and the button “Validation Log” regard the validation cycle of the project.
This aspect will be discussed further in section 5.7.1, in "Analysis and transmission of the program."

"Username" (16 characters) and "Extra Data" (24 characters) are, on the contrary, can be editable.
The "Username" field is pre-filled with the user name of the user of operating system.
The "Extra Data" field is needed for the user to enter data he wants (design, code, Reviews, ...) inside the
module. Once programmed the module data can be checked by Gemnis Studio (see Monitor) or through
external programs (see System commands).
All other fields are stored only in the project and they are freely editable.
The fields that appear in the "Title block data" are provided in print (see Prints).
The check boxes "Show project name", "Show signature", "Show user name" mean that the data stored in
the module are also included in the title blocks of prints.
In "other information", the field "Description" is used to give a brief description in the project that will be
used during the research of PZZKE files from the menu Projects → Open.
The "notes" field allows you to write notes in extended way using different colors and formatting.

5.6.2 Application program and digital signature
The project file contains all the information of the project including those one not necessary for the
operation of the module, such as the graphics and comments. This collection of information is excessive for
the storage capacity of the module. For this reason, from all the information in the project file the module
programming software will extract only those necessary for the proper functioning of the module and only

Page 24

this information will be transferred to the module. This collection of information is called "Application
Program".
The collection of data, necessary for the configuration of the module, is subjected to a mathematical
calculation that extracts an identifier code called "digital signature", which is a string of 16 characters that
uniquely represents the Application Program.

The digital signature is computed from all and only the information necessary to the proper operation of
the module. For calculation of the digital signature are then excluded not only the information data present
in the file PZZKE, but also some data of the headline that exist in the application program, but don’t
contribute to the operation of the module. Are evaluated for calculation of digital signature tha name of
project, the build date, username, and the Extra data. The possibility to change these data without
changing the file's digital signature allows the insertion of some information user variables (such as a
unique serial number or other) in the configuration file, data that can then be adapted at any time by the
module once programmed.
The digital signature of a project is recalculated at each compilation and always before creating an
application program ready to be transferred in a modulo.

The project file must be protected and saved properly. In particular, it is recommended to run at regular
intervals backup files of type PZZKE that, if deleted, can no longer be recovered. The application program,
on the contrary, can be read again by a programmed module (only if you have permission, see next
section), but these data do not allow a complete reconstruction project files with information and graphics.
Such data may be used solely for Backup or recovery of other identical modules (see Extracting a program
from a module).

Page 25

5.6.3 Password
Gemnis series modules are designed to provide a number of services and information through existing
connections. In particular, modules with USB port can be programmed, providing information about the
program loaded and its executing state, communicate internal variables values, be restarted and provide
debugging information. The ability to perform all these operations is very useful in realization or in testing
phases of a project but, once the project is completed and is loaded on the modules that are installed in the
machinery, the programmer may wish to limit the possibility of alteration or reading of data in module for
other people.
In other cases the programmer who developed the project wants to give the project file to other people in
the company only programming new modules, without, however, providing access to the source code or by
limiting access to the only chance to see the monitor of the state of functioning of the module.

To meet these needs it is possible protect by password the ability of interaction of a module and/or the
ability to edit the project file.

5.6.3.1 Protection Password for the module
A module can be programmed either with or without a password. In any case it is always guaranteed a
minimum level of interaction or "access level" (see note) that allows the reading of the nominal data of the
project, the State of the module (see Modules state) and the current Access Level.

 In modules Gemnis series, is defined by the term "Access Level" the degree of interactivity in the form
through the USB port. Access levels are in total 4, numbered from 0 to 3 in ascending order and this
implies that if the module is placed at a certain level of access, all lower levels will be available too. For
example to access level 3 will be executable all the functions available access levels 0,1 and 2. Are
currently used only the basic (level 0) and maximum (level 3) access levels.

Module not protected by password
When a module is programmed with an Application Program not equipped with password, the Access Level
of the module (programmed) is the maximum level allowed, the level 3. This access level allows writing,
reading or the cancellation of the application program. In this level you can also restart the software while
you are running the application program.
When a module is not programmed it sets itself to level 3. This is also the condition of a module just
purchased.

Module protected by Password
When a module is protected with password has Access level equal to 0. At this level you can invoke only a
few basic commands and the command that allows you to change the level of access. Invoking this
command the password that is compared to the in-memory module will be requested. If the password is
identified in module the access is set to Level 3. If you do not re-program the module, the next reboot is set
to access level 0.
At Access Level 0 you can read the value of the internal variables of the program (but not the underlying
code) and therefore, also through specific external programs, monitor the operation of the module. This
level of access is required to Gemnis Studio to graphically represent the State of the program at run-time.
Setting the protection Password module takes place in the main form of the project.

When you create a new project there are no password and in this condition the form, once programmed,
always access at Level 3. This condition is normally used in the development phase of a project so that you
can quickly reconfigure a module without having to provide the password every programming.
When a project is completed and you want to protect module then you need to enter the password you
want. The password may use any non-ASCII character (from 0x20 to 0x7E) and have a maximum length of
16 characters.

Page 26

When the module is programmed and restarted, the module identifies the new access level and no longer
provides accessibility to information and commands of a certain level if before is not provided your
password to access this level.

5.6.3.2 Password protection of the project file
The project file can be protected with a password to prevent modification of the source code (the graphics)
by other users. Setting the password protection of the project, the PZZKE file can’t be edited but it may be
used to send the data to a module through the Sequential Programming Procedure as already explained in
the paragraph Programming by rows of one or more modules.
For example, consider the case in which a programmer develops a project that will be installed in the
modules by another person of the staff, typically directly on the production line. If the programmer does
not want other people to edit the project, can provide such person a copy of the installation file Gemnis
Studio and the project file (protected by a password). Gemnis Studio will start in Demo mode but can still
be used to send the project file to the module, whether to display in the monitor (see Monitor) the
operation of the module once installed.
Once set, this password will be required each time you open the file.

5.6.3.3 Password protection also to project view
In case you want the project file not to be changed and even not be displayed in Gemnis Studio monitor,
you can set a new password. It will be requested every time you try to display the state of the module in
the monitor.

5.6.4 Migration of programmes
From the Projects menu it is possible to select the Migration Tool entry, in order to convert a programme
that had been created for a specific module and adapt it to a module other than the original one.

Page 27

In order to migrate a programme it is necessary to:
1. select the file containing the programme to be migrated;
2. enter a file name for the destination programme;
3. select the destination module from the list of available modules.

During the conversion, Gemnis Studio performs a check on the inputs and outputs, in order to check the
compatibility of the programme between the source module and the destination module.
Programme migration between modules may not be possible when the features of the source module are
very different from those of the destination module.

Any incorrect or missing connections in the destination module are automatically removed from the
application programme

 Even if all the connections between the source module and destination module are correct, it is
always recommended to check, analyse and correct the result of the compiled migrated programme
manually, in order to guarantee the correct execution of the application programme.

5.7 User Program Tab
Once you have created a project you can start immediately creating the application program by accessing
the "User Program" tab.
The work environment is so divided:

1) The Desktop that is the main workspace.
2) Panels with sensors, functional blocks, objects and Layout Module
3) The Log of events and resources area
4) Bar with buttons for the compilation of the program loaded into the module, the simulation

program, the ability to set some options for the desktop.

Page 28

5.7.1 The Desktop.
Studio Gemnis was created with the aim of making the most immediate and intuitive the use of a Gemnis
series module. With this target and reminding the typical application of these products, we have chosen to
create a working environment, the Desktop ,where the user has, as far as possible, all the information he
needs to "see" and not "imagine" how works the project he is developing. For this reason we tried to focus
our attention to the graphical representations of the objects, the physical characteristics of the module
used, immediate interaction, through simulation, with the program created.
The Desktop is the main workspace of the user, the area where is defined, using the graphical user
interface of the program, the flow and processes that must be applied to the data detected by the module.
The desktop is divided into three parts:
1) the sensor area
2) the functional blocks area
3) the outputs zone

Page 29

In the Sensors area (1) the user will indicate which type of external devices are connected to the terminals
of the module and all the parameters needed to define them.
In the area of Outputs (3) are present all output devices present in the chosen module (relays, transistors
etc.).
In the area of functional blocks (2) you will insert all necessary logical functions to develop the flow of data
from sensors and will make connections that transfer data between objects on the Desktop and on the
outputs.

In the Desktop there is a dashed box (4) that represents the area “occupied by the module” that is, from
clamps to the code, everything is enclosed in a physical module. The area outside of this box is instead
occupied by images of physical devices external to the module (switches, buttons, etc.) by their internal
structure and their expected eventual description.

The selection panels and the Event Log

On the left side of the desktop, there are some panels for the selection of the objects to include in the
desktop and for information. There are four sliding panels, selectable by clicking on the relative bar:

· Sensors: The list of all objects that can be used in area 1.1 (see Sensors).

· Functional blocks: The list of all objects that perform specific functions of safety and that can
be used in area 1.2 (see Functional Blocks).

· Objects: The list of all objects that don’t perform specific functions of safety but wich are
useful for completing or understanding of the functions performed out and that can placed in the
area 1.2 (see Other items).

· Module layout: represents the front view of the selected module for the project. It is useful for
see where the module’s clamps are..

Below the sliding panels of selection there is an area with two tabs:

Page 30

· Desktop Search: You can search for an object in the name or description within the desktop. The
search is activated by pressing Ctrl + F in ' User program' which will place the focus directly on the
search box automatically pre-selecting any existing text. The search is performed after pressing the
'Enter' key . Will present the results in the grid below , showing the type of the object found and
the value of the property for extended that contains the value sought. By clicking on a result will be
automatically selected the object and the desktop will be placed so as to be centered on the object.
The identification of this is highlighted with a colored rectangle that gradually disappears. Any
change to the desktop will reset the previous research

· Events: Show visually, with colorful symbols, a list of recent events of the program, such as the
successful compilation of the project, the start of simulation phase, errors and others useful
information.

· Used resources: After the compilation of a project, this area shows how many resources are used
by the project. The area indicates respectively how many memories of type X, B e W, how many
memories dedicated to the sensors and how much of the total storage of the module has been
used, all of these data as a percentage compared to the maximum available.

Toolbar of the desktop

At the top of the desktop there is a toolbar that allows you to interact with the data in the desktop.

Kernel version: Allows you to choose for wich kernel to compile the project. If you are programming
security modules with Kernel 10, you must select the value “K10”, the default choice is instead the most
recent “K11”. A program compiled for Kernel 11 can’t be downloaded to a module with previous Kernel.

Compile: It allows you to perform a compilation of the program on which you are working. The result of
the compilation is visible in the logs that are displayed in the area previously described in section 5.7. The
compilation of the program can give positive or negative depending on whether or not the program
contains errors. Incorrect compilation does not allow the sending of the program to the module until the
user does not correct the errors reported.

 Analysis and transmission of the program: Performs compilation and displays the formal evaluation of
the project. If there is a module attached, the user can send the program to the module. The window for
analysis and sending of the program is shown in the following figure.

Page 31

1) Formal evaluation: this feature is intended to help the programmer to avoid omissions or
inaccuracies. It is basically a formal judgment on the whole project. This evaluation does not
prevent the programming of the module, even if the error-free program is not considered
formally correct, as may exist extremely different cases which can not be evaluated by the
program. For example, the program can be only a test to be tested on the desk of the designer,
or some reports may not be reflected in real life due to technological choices or fault exclusions
that can be made only by those who know the machine on which the module will be installed.
In user help is a visual representation of the results of evaluation described above. The colors
red, orange, yellow and green are an immediate assessment of the project for the user. The
meaning of the colors is as follows:

The program has errors and can not be in any way sent to the module
may be connected. Section 3 will be hidden to the user.

The program compiles without errors but presents formal
incompleteness that will have to be analized.

The program is formally correct but it lacks some actions (actions that are
fully described in the logs on the side. For example: Simulating the
program, Complete validation ...)

The program is formally correct (compilation and validation).

The formal evaluation of the program has the sole purpose of helping the programmer to avoid errors
or omissions and do not in any way replace the assessments and tests that must be done by the user (see
also section User's responsibility).

2) Validation of the project: It formally conclude the design cycle. It is for this reason that the
validation should be carried out by anyone other than those who conceived the program.

Page 32

Validation is closely related to the digital signature of the project. This, as noted, changes from
time to time when they make changes to the project. It is important to understand that the
validation is used to keep track of checks carried out by the operator before the official release
of the program. It is for this reason that for every validation you have to insert a comment. This
comment is stored in the log validation visible in the general section of the project.

3) From this tab, you can send the program to the module connected via the USB port. The
transfer sequence of the program activates the Monitor tab. This tab displays information
about the status of the module and the transfer in progress (see Monitor). If no module is
connected to the PC or there are errors in the program then this section will not be visible!

Play - Pause - Reset - Time – x0,1 - x1 - x10: These buttons let you start, pause or interrupt the project
simulation (see Simulation).

 Zoom & Pan: The entire desktop is zoomable through the combined use of the CTRL key and scroll
wheel on the mouse, from 20% to 400% of normal size. Zooming is centered in the arrow of the mouse on
the desktop. You can also manually set the zoom percentage you want, within the limits specified, using the
zoom box. The Desktop is also movable (Pan) through the combined use of the Ctrl key (or the spacebar)
and moving the mouse while holding down the left mouse button. At any time, you can return to normal
size (100%) and to original location of the desktop by clicking on the icon Zoom. The Pan & Zoom functions
are also available during the simulation of the project and in the Monitor tab.

 Desktop settings: This button activates a form with the general graphics settings related to the project.
You can indicate the type (size) and the orientation of the sheet that is under the Desktop and then that
will be used during printing. By changing the type and orientation of the paper will therefore also changes
the area of the Desktop and also the placement of objects already present. You can also change other
graphics parameters of the Desktop.

5.7.2 Sensors

The sensors.
From the Sensor Panel you can select a sensor with the mouse and drag it to the desktop area. Inside
Gemnis Studio this is equivalent to associate a specific safety feature to some module terminals, and to
report the results of such a function on "connection points" that can be later used to transfer such data to
other parts of the Desktop.

 Choosing a sensor and the resulting type of electrical connections is crucial to the analysis of safety of
machinery. Note that even by using the same external device (e.g. switch) can exist different types of
sensor designed to handle that same device depending on how it is electrically connected to the module
(eg. S1C or S1E) and that consequently the risk analysis is different.

Page 33

Each sensor created in this way has a graphic area on the left with an image that represents the external
physical device to the module and, when possible, a view of the internal configuration of contacts and how
they are connected to the terminals of the module. To the right of the area is represented by a frame, the
associated safety function and, inside the box, the parameters currently selected for the function.
The code of the safety function is highlighted in the upper part of the box whereas, to the left, is
automatically created a progressive ID useful for discriminating sensors of the same type.
It is important to note that sensors "graphically different" can have the same underlying safety function.
For example, the sensor that represents an emergency mushroom has the same safety function of a rope-
switch for emergency stops, as far as electrical connection is concerned, since the two devices can be
considered identical. The fact that there are two or more other graphic representations of the same safety
function is due to the goal of creating an environment that is as much as possible what is the real
application.
The safety function associated with the sensor can produce many outgoing data, typically at least two: the
standard output and standard error output of the function. The meaning and value of outputs from sensor
to sensor can change. We recommend to read and fully understand the associated documentation (see
later). However, in general, it there the assumption that the standard output is activated when the sensor
is in his safe status and the safety function has not detected failures, on the contrary, when an error is
detected, error output is active the standard output is deactivated.

 Studio Gemnis is able to manage binary and numeric type information. The binary information (0,1)
are identified by the prefix "X", the numerical 8 bit information by prefix "B" and the 16 bit information by
prefix “W”.

The standard output of a sensor is typically of binary type and is then called "XOut", and similarly the
standard error output is called "XFault".

Page 34

Sensor Status Error function XOut Xfault

any Active 0 1

Not Safe Not Active 0 0

Safe Not Active 1 0

The sensor outputs are represented by small black boxes that represent the "connection points" of the
sensor that are the areas from which you can start connections that transfer values of the outputs to other
parts of the desktop.

Changes on sensors.
Every sensor is editable, and to do so, you can right click on the panel of the Sensor, and then click button
Properties to access the Edit tab (or more briefly a simple double-click) or click on the button Delete to
delete it from your desktop. Each sensor is equipped with a specific form but some customizations are
common. For example, each sensor can be associated with a custom description that will appear in the
graphics window.

Terminals.
In each tab concerning sensors, in the Inputs section, are shown the terminals to which physical device is
connected. The clamps are intelligently and automatically connected during the creation of the sensor but
the user can still decide to change these associations to his liking by editing the data directly in the tab. You
may also have an immediate reference of where these terminals are physically present on the module by
selecting the Panel with the layout of the module, as shown below.

Page 35

Before you modify the data you must however consider of the constraints imposed by the system, in
particular that:
1) each input terminal (Ix) must be associated with only one sensor.
2) sensors that detect data from a pair of mechanical contacts must take Test Signals from sequential
terminals and where the first clip is of odd and the second even index. For example the pair T01-T02 is
correct while the couple T03-T02 (first clamp even) or the couple T01-T04 (non-contiguous pair) are wrong.
The data set by the user are checked during compiling.
3) some sensors, if present, introduce additional constraints that must be evaluated carefully by those who
generate the program. For example, the use of devices that allow short circuiting between channels (such
as safety mats) places restrictions on other sensors that don’t allow short circuit because the second sensor
would detect a fault. This type of problem can be solved either by dividing the test signals that by using
diode networks external to the module. In these cases it is up to the programmer to identify the
appropriate solution.

Parameters.
Some sensors are configurable: you can modify their standards behavior according to some specific
characteristics of the real device. For example, some sensors allow you to vary the standard scheme of
contacts (from 2NC to 1NO+1NC).
Sensor parameters are listed in the sensor and you can modify them. The parameters and the value set are
highlighted graphically in small rectangles that are at the base of the sensor.

Page 36

Sensor outputs.
In addition to the typical standard outputs XFault and XOut each sensor can have additional outputs that,
being less common use are hidden during creation. These outputs can be made visible by changing their
state, in sensor tab, in outputs section.

On this tab you can also set the default behavior of the sensor during simulation phase or the State in
which it will be at the start of each session.

Page 37

Electric sensor types.
This tab shows the image that defines the type of device. See also paragraph Sensors List.

Image of the sensor.
On this tab, you can select the image associated to the sensor. In fact, sensors, even if they have the same
electrical typology, can have different "physical forms". Depending on the type of sensor we have
preloaded several images that represent the most commonly used safety devices with that type of sensor.

Safe sensors and "unsafe" sensors.
Some real devices once connected to the module are checked very thoroughly and the safety function of
the module is capable of detecting many types of failures. Other sensors, for their intrinsic nature, have
failures which cannot be controlled by the module. These devices can also be connected to the module but
it is up to the programmer to evaluate in depth the possible faults of such devices and their possible
consequences for the functions performed by the module (see documentation). To remind the programmer
and make clearer their unsafe nature they are reported through a colorful striped sidebar (see figure).
Note that "not safe" nature is not due only, this case, to the device itself but also how it is connected to the
module. Then an electric type sensor S1E (see S1E Sensor) can be for example an inductive sensor but also
a safety switch with positive opening. In this case is the type of electrical connection that does not allow us
to exclude certain types of failure, such as links, and then, for this matter, this device is highlighted.

Definitions
In the definition of the sensors the following terms are used:

Page 38

· Electric Type: classifies the electrical nature of the device. The images that represent the electrical
nature of the devices should be interpreted as follows:

 the box represents the device and on the inside there is an indication of schematic electrical
circuit within the device, typically mechanical contact or transistor.

 the "+" symbol represents the voltage present on Terminal A1 module (typically + 24VDC)
 the arrow symbol represents the output or the outputs of the device and it will be linked to

module inputs
 The symbol of the dashed line with two arrows at the ends is a dependency between the

parts of the device. The dependency can be mechanical in nature (contacts mechanically
linked) or functional (transistors that are driven simultaneously) and indicates a constraint
that the sensor uses to determine failure of non-coherence between signals.

 The symbol ‘T’ followed by a square wave indicates the Test signal generated by a clamp. If
the test signals used by the sensor are two, they are typically represented by "T1" and "T2"
with square waves in phase opposition.

 The symbol "Tc" indicates a fixed temporal simultaneity between two fixed device channels
· Examples: a list of real devices that, according to their electrical connection, can be traced to the type

of the considered sensor. The examples are not intended to be exhaustive and are meant only to
demonstrate visually, inside of Gemnis Studio, the type of product that the user has physically
connected to the module. It is not the "shape" of the device but that such a device is connected as
required by the type of sensor.

· Connections: indicates the number of input terminals and Test signals needed to check the safety
device.

· Parameters: Indicate the possibility of sensor configuration to adapt to the physical nature of the
Safety Device.

· Parameters-Types of Entrances: the term 2NC means that the device has 2 normally closed electrical
contacts in safety conditions which open both in the situation of danger. In the case of electronic
devices, it means that the device is equipped with two electronic active outputs both closed in safe
conditions and both off in the situation of danger. With 1NC + 1NO term means that the device has
a closed and an open contact safely exchanging their position in a position of danger. In the case of
electronic devices, it means that the device has two outputs and an electronic active safely off that
reversed the polarity in the situation of danger.

· Parameters – maximum time of simultaneity: sensors with multiple inputs, this parameter identifies
the time limit within which you must bring inputs into a position considered coherent, depending
on the chosen Sensor. Typically the time of contemporaneity is needed in mechanical devices to
verify the correct positioning of contacts within a time limit to avoid problems due to rebounds or
"inaccurate activations " by users of the machine.

· Outputs: lists the name of connection points made available by the sensor and their function
· Detectable device failures: Lists the possible faults that the sensor, depending on the type of device, is

able to detect.
· Behavior at startup: Indicates the behavior of the sensor depending on the data at startup.

Page 39

5.7.2.1 S1E Sensor

Electric type 1 sensor channel not testable. In the two examples.

Examples Various types of electronic devices with PNP output (inductive sensors,
photocells, etc.) or mechanical devices with 1 touch connected directly to
the positive (e.g. buttons, switches, etc.)

Connections 1 Input

Parameters None

Outputs Xout. Indicates the value of the incoming connection

Detectable device failures None

Behavior at startup Xout indicates the State of the entry

This sensor alone is not able to detect the device's electrical fault such
as short circuit to positive or toward mass or functional breakdowns as the
welding of contact or, in the case of electronic outputs, the output
transistor short circuit. The output of this sensor should not be used
directly for safety-related functions. Can be used for example for
controlling the Start button but only if linked to the use of an additional
analysis function, for example signal front within the Gemnis code, or,
however, of a function that does not allow

Possible faults

Typically devices that are attached to this sensor are not used alone and the safety function that they
perform is functional. For example, most optical sensors can be used to create a muting function. This
function is based on a specific sequence of activating and deactivating of devices in a considered time. A
failure on one of the devices would then intercepted not so much from the safety function of the sensor
but by the application program.
Are also other cases where this type of devices can be used, for example by implementing procedures for
periodic testing (according to the risk).

Page 40

5.7.2.2 S2ED Sensor

Electric type 2 sensor channels untestable with signals between them dependent

Examples Electronic devices of various types with a double PNP output (optical
barriers, RFID sensors, sensors with double output OSSD type, etc.) or
mechanical devices with 2 contacts connected directly to the positive (e.g.,
emergency buttons, switches with two contacts, etc.)

Connections 2 Inputs

Parameters Input type: 2NC or 1NC + 1NO (intended in safe conditions).
Maximum time of contemporaneity: selected between 0.02 and 2.55
seconds

Outputs XOut: active if the inputs are active and consistent and there are no errors of
contemporaneity
XFault: active if there is a timeout for the maximum time of simultaneity
Xin1: Value for input 1
Xin2: Value for input 2

Detectable device failures Inconsistency of the outputs of the device when it is higher than the set time

Behavior at startup If the module both channels are in consistent state Xout is active

 This sensor alone is not able to detect some electrical fault external to the device such as short circuit
between channels. Short circuit to positive or mass of a single channel is instead detected as not
inconsistent signals for an infinite time.
This type of sensor is widely used but may be necessary additional protection measures in the wiring. If
the device is equipped with an electronic safe outputs (OSSDS type for example) this implies that in case
of short circuit to ground or positive to a canal or in the case of short circuit between channels the device
disables both its outputs and therefore detection of individual failures is however guaranteed. In the case
of devices that do not have controlled outputs are typically necessary additional measures such as
physical separation of cables.

Page 41

5.7.2.3 S1C Sensor

Electric type Sensor with 1 tested channel

Examples Various mechanical devices with 1 NC contact (e.g. buttons, switches, etc.)

Connections 1 Input
1 test signal

Parameters None

Outputs XOut: contact State if there are no errors due to short-circuiting
XFault: active if a short circuit is detected

Detectable device failures Short circuit to positive, short circuit to other test signals (see note 1)

Behavior at startup Xout indicates the State of the entry

 This sensor detects a significant number of external electrical fault to the device but not internal ones
such as the internal short-circuit (contact welding). If this sensor is used to generate a startup command
is recommended to use an additional detection function (controlled start) to avoid that a contact welding
causes unexpected startups.
In case of short circuit to ground the failure is detected not by the Sensor (which however interpret the
contact as open) but from overcurrents control of the module.
In the case of safety devices (pushbutton for emergency stops or safety switches with a single contact NC)
it is important to use positive opening devices in order to exclude the possibility of contacts welding. In
any case, with single-channel devices, there are important limitations on the highest levels of safety
reachable (see safety standards).

Page 42

5.7.2.4 S2CI Sensor

Electric type 2 independent channels sensor tested

Examples Various mechanical devices with 2 contacts (2NC or 1NC + 1NO)
mechanically independent e.g. safety magnetic sensors, pairs of switches
(also of different type) mechanically connected to the same shelter but that
can act at different times.

Connections 2 Inputs
2 test signals

Parameters 2NC or 1NC + 1NO (intended in safe conditions)

Outputs XOut: active if the inputs are in the expected and there are errors
XFault: active if a short circuit is detected
Xin1: input Value 1
Xin2 2 input Value:

Detectable device failures Short circuit to ground one or both channels, short circuit to positive of one
or both channels, short circuit between the two channels or other test
signals

Behavior at startup If when both channels are in consistent state Xout is active

 This sensor detects a significant number of external and internal electrical fault in the device. Internal
short-circuit between channels are detected. Are not detected the internal short-circuit of individual
channels (contacts welding) or rupture. Having infinite contemporaneity time this Sensor is not able to
distinguish a single break from working properly. In the case of a single break the dual-channel structure
of this sensor allows however to carry out the safety function. The fault is detected on first demand.

Page 43

5.7.2.5 S2CD Sensor

Electric type 2 dependent and tested channels sensor

Examples Various mechanical devices with 2 contacts (2NC or 1NC + 1NO)
mechanically dependent such as pushbuttons, rope switches for emergency
stop, safety switches, safety hinges

Connections 2 Inputs
2 test signals

Parameters Input type: 2NC or 1NC + 1NO (intended in safe conditions)
Maximum time of contemporaneity: selected between 0.02 and 2.55
seconds

Outputs XOut: active if the inputs are in the expected state and there are no errors
XFault: active if there is a short circuit or a lack of simultaneity
Xin1: input value 1
Xin2: input value 2

Detectable device failures Short circuit to ground one or both channels, short circuit to positive of one
or both channels, short circuit between the two channels or other test
signals, welding or rupture of the individual channels.

Behavior at startup If at startup both channels are in consistent state Xout is active

This sensor practically detects all electrical fault. The internal short circuit is detected between the device
and the internal short-circuit of individual channels (contact welding) or failure. Having a finite
contemporaneity time the Sensor can distinguish a fault by detecting the inconsistency between inputs, as
soon as the maximum time allowed is exceeded.
Note that the "dependance" of contacts does not imply a physical link between the contacts but is simply a
logical dependency. Within this category are not therefore only devices with two contacts mechanically
interconnected but also devices that, for example, as they are mechanically connected to the same shelter,
then must move simultaneously.

Page 44

5.7.2.6 SSM Sensor

Electric type 2 sensor channels always tested with closed short circuit between channels

Examples Safety mats or sensitive edges with 4 wires technology

Connections 2 Inputs
2 test signals

Parameters None

Outputs XOut: active if there is short circuit and there are errors
XFault: active if there is a short circuit to positive or the wires are broken
Xin1: input Value 1
Xin2 2 input Value:

Detectable device failures Short circuit to ground one or both channels, short circuit to positive of one
or both channels, channel break.

Behavior at startup If when both channels are in consistent state Xout is active

This sensor detects virtually all electrical fault. It detect the short circuit to ground, to the positive and the
disconnection of wirings.
You must pay attention to the fact that this device, accepting short-circuit, when connected to the same
Test signals of other devices that do not admit it, may led to detect non-existent short circuits on those
other devices (see figure).

For this reason it is necessary to maintain the Test signals for this kind of devices separate from the other,
selecting modules equipped with multiple Test signals. Alternatively you can wire a network of external
diodes (see figure).

Page 45

 Due to the mechanical "large" nature of these devices (especially in the case of multiple safety mats
connected in series), it is necessary to pay special attention not to exceed the maximum electrical
capacity allowed for inputs channel of the module (see technical specifications).

5.7.2.7 STHC Sensor

Electric type sensor with 2 channels tested that you can cross

Examples Category IIIC bimanual commands, pairs of switches with exchanging
contacts linked to the same gate

Connections 2 Inputs
2 test signals

Parameters None

Outputs XOut: active if both contact commute from the rest position to work within
0.5 seconds.
XFault: active if there is a short circuit to positive
Xin1: input Value 1
Xin2: input Value 2

Detectable device failures Short circuit to ground of one or both channels, short circuit to positive of
one or both channels.

Behavior at startup Xout is zero, even if the contacts are in working position, you must release
your contacts and then press.

Since it is admitted that contacts can cross, some failures cannot be detected directly by the sensor. For
example, breaking or welding a contact keeps the device in a State still normally possible. In any case, in
these conditions the standard output of the sensor is inactive.

Page 46

You must pay attention to the fact that this device, admitting short circuits when connected to the same
test signals of other devices that do not admit it, instead, can detect short circuits that may not exist in such
other devices (see figure).

For this reason it is necessary to keep the test signals for this kind of devices separated from the others by
choosing modules with multiple test signals. Alternatively, you can insert a network of external diodes (see
figure).

Page 47

5.7.2.8 STHA Sensor

Electric type Sensor with 2 tested channels not crossable

Examples Category IIIA commands bimanual, pairs of switches connected to the same
gate

Connections 2 Inputs
2 test signals

Parameters None

Outputs XOut: active if both switch contact from the rest position to work within 0.5
seconds.
XFault: active if there is a short circuit to positive
Xin1: input Value 1
Xin2: input Value 2

Detectable device failures Short circuit to ground of one or both channels, short circuit to positive of
one or both channels, short circuit between the two channels or other test
signals

Behavior at startup Xout is zero, even if the contacts are in working position, you must release
your contacts and then press them

Due to the mechanical structure of this type of devices some kinds of internal failure cannot be directly
detected by the sensor. For example, breaking or welding of a contact keeps the device in a state still
normally possible. In any case, in these conditions the standard output of the sensor is inactive.

Page 48

5.7.2.9 SSE8 Sensor

Electric type Sensor with 2 to 8 tested channels that cannot cross and with only one
active at a time. It is accepted that for a short time the device is inconsistent
(for example during the switch-over from a contact to another).

Examples Selector switches or modal selector from 2 to 8 positions

Connections From 2 to 8 Inputs
1 test signals

Parameters Number of inputs (from 2 to 8)

Outputs BOut: Indicates with a value from 1 to 8 the active entry; the value is 0 in
case of error
XFault: active if there is a short circuit to positive or between channels or if
the selector does not reach a stable position within 0.5 seconds

Detectable device failures Short circuit to ground all channels, short circuit to positive of all channels,
short circuit between any channel, shorting any channel to other test signals,
disconnection of test signal, disconnect of any channel, mechanical breaking
of selector with open contact.

Behavior at startup Bout indicates the active input

With this sensor can practically detect all types of electrical failures of this type of devices and also some
mechanical breakdowns as breaking of the contact. Some electrical fault may not be detected immediately,
such as a disconnecting of an input wire, but they will be detected the first time that function is requested.
It is allowed that, with "slowly" operated selector, this Sensor may create incorrect contact combinations
(all contacts open or closed two contacts simultaneously) but only for a maximum time of 0.5 seconds.
During this phase the output does not change, i.e. Bout is stable until a correct position of the selector is
reached.

Page 49

5.7.2.10 SPE3 Sensor

Electric type Sensor with 2 tested channels which can't cross and that must follow a
precise sequence of activation/deactivation composed by three states: Rest,
Work, Stop. See examples.

Examples Enable pushbuttons, or safety footswitches

Connections 2 Inputs
2 test signals

Parameters Type 2NC inputs (means in work position).

Outputs Xout: indicates whether the button is in Work position
XStop: indicates whether the button is Stop position (strongly tighten)XFault:
short circuit to positive or wrong state
Xin1: input Value 1
Xin2: input Value 2

Detectable device failures Short circuit to ground one or both channels, short circuit to power supply of
one or both channels, short circuit between the two channels or other test
signals

Behavior at startup If the device is in Work position XOut remains at 0 until it goes first to the
Rest state.
XStop behaves normally.

The SPE3 sensor provides control of an electrical device that has the same electrical connections of others
but admits only a specific sequence between three states defined Rest, Work and Stop as shown in figure.
When the button is released, the device is in a Rest state (1). When the button is pressed but with normal
pressure the device is in Work state (2). When the button is strongly pressed the device is in Stop state (3).

The device is built in such a way that they are possible only following state transition: 1->2, 2->1, 2->3 and
3->1. In practice this means that after being entered in the Stop state the device cannot return immediately
to Work state but must first pass in Rest state, to prevent an unexpected restart of the machine.

 This sensor detects a significant number of external electrical fault in the device but not all internal
ones such as the internal short-circuit (contact welding). The particular structure of the sensor which
provides for a specific sequence of States allows to identify even some internal faults.

Page 50

 Some 3 stages enable pushbuttons have contacts made in such a way that states 1 and 3 are
electrically indistinguishable. For example in the case where the sensor has two open contacts both in
state 1 and 3. This type of enable pushbuttons must be managed with the S2CD (see Sensor S2CD Sensor
).

5.7.2.11 SUSB Sensor

Electric type Integrated sensor

Examples USB port of the module

Connections USB port of the module

Parameters NonSafe or Safe Protocol

Outputs XNoUsb: indicates a missing USB connection
Out (n): 8 outputs of user definable type (only with Protocol = Safe)

Detectable device failures Disconnect the USB cable

Behavior at startup

This sensor is a "virtual" one because it does not check external devices but is typically used by an external
controller (PC or PLC) to enter data into the module in safety manner. Input data are presented on 8
different connection points whose type (X, B or W) is user-defined.

Not Safe Protocol
If the sensor is used with parameter "Not Safe" it presents only the "XNoUsb" connection point, a type X
connection that has a value of 1 if the USB port is not connected. This output is used usually to activate
some output signal of the module in order to warn the user that the USB cable is disconnected.

 The XNoUsb is not a safe signal and should not be used to enable safety outputs.

Safe Protocol
If the sensor is used with parameter "Safe" it introduces, in addition to XNoUsb, other 8 connection points,
named Out0-Out7, of user settable type. Depending on the user-defined type, outputs change names. For
example, if the 0 index connection point is set to type X, its name will become "XOut0", while if type B is
chosen, its name becomes "BOut0".
In the figure, the outputs having index number 0,1 and 2 have been respectively set of type X, B and W.
Consequently connection points have assumed the name of "XOut0", "BOut1" and "WOut2"

Page 51

At run-time through the writing protocol (see Writing data into the module) an external controller can
write data on these variables that become to all intents inputs for the Application Program.
This type of sensor is used in case you intend to use variable numeric values, e.g. for different timings
according to the operational status of a specific machine or according by used tools.

 This functional block is a powerful tool that should be used carefully by the programmer. It is not
recommended to use this Sensor to allow safety systems bypass.

5.7.2.12 STIN Sensor

Electric type Integrated sensor

Examples Double temperature sensor integrated in the module

Connections None

Parameters Mode of representation of the temperature

Outputs BTemp: the average value of the temperature detected
XFault: excessive temperature difference between the two sensors

Detectable device failures Rupture of an internal temperature sensor

Behavior at startup

Page 52

This sensor is intrinsic because in each module of the series Gemnis there are two integrated sensors of
temperature controlled independently by the two processors of the system.
The value of the average temperature detected by the two sensors is disclosed in connection Btemp, using
unit of measure provided by the parameter that is:
1) Increased to 100 ° Celsius (for not having to deal with the sign of the sub-zero temperatures)
2) Degrees Fahrenheit unsigned.

Since Gemnis does not handle numeric values with sign it follows that the representation of degrees Celsius
for temperatures below zero would be impossible. For this reason it was intended to represent the internal
temperature of the module in degrees Celsius incremented by a fixed value of 100 so that all permissible
values are positive. For example an internal temperature of 40 ° C will be represented as 140 °, while a
temperature of -10 ° C will be represented as 90 °.

The use of this sensor is suggested as a warning signal, before the temperature reaches values in the
context that may lead to the arrest of the module for under-or over operating temperature (see technical
data in the form to the labor camp admitted).
The accuracy of the internal temperature sensors is ± 2 ° C.
The indicated temperature is the average temperature of the two internal sensors.
If the difference between the two internal sensors exceeds 10 ° C due to high thermal imbalances or due to
the rupture of one of the two internal sensors, the sensor STIN activates the output XFault.

 You can’t use this sensor to detect safely temperatures outside the module, not only outside but also
on the context of the devices or specific areas within the panel. The temperature measured inside the
module depends on many factors including the physical location of the module in the panel, from devices
that work with it and the heat they generate. In a panel with good ventilation (in order to standardize the
internal temperature) and after experimental analysis this sensor can provide an indirect indication of the
temperature inside the panel but with precision, response time and value to be determined on a case by
case basis and in any case not guaranteed by the manufacturer of the module.

Page 53

5.7.2.13 SAN1 Sensor

Electric type Control a pair of analog sensors with 4-20mA output in both 2-wire 3-wire
version.

The power supply of the sensors can be taken in parallel with the power
supply of the module (Vcc = A1, A2 = Gnd) or by separate power supply.

Examples Redundant control of a single analog parameter such as temperature,
current, vibration, etc..

Connections See the examples. A + means the power supply terminal and A- the ground
terminal of the board to wich the 4-20mA sensors are connected. The
nomenclature of A + and A- is dependent on the module (see General
Hardware Characteristics).

Parameters Mode of representation of the mean value in Byte or Word.
Maximum permissible difference between the values measured by the two
channels (coherence)
Maximum allowable non-coherence time
Minimum and Maximum current allowed for the two 4-20mA sensors

Uscite Bout or Wout: the mean value of the two sensors
XFault: Active in case of error
BFaultCode: In case of error indicates the numeric error code
BOut1 (optional): The current value detected by the first sensor
BOut2 (optional): The current value detected by the second sensor

Guasti del dispositivo
rilevabili

Over or undercurrent of both sensors 4-20mA or broken devices (short-
circuits or openings) or electrical connections.
Inconsistency between the incoming data from the two sensors, or a sensor
decalibration or physical removal of a sensor by the magnitude in phase of
detection.

Comportamento all’avvio On the module startup, the 4-20mA sensors need to be active and able to
provide consistent data with the set parameters.

 This type of sensor is displayed in Gemnis Studio only on modules with analog inputs and with
terminals of type "C".

This type of sensor was designed to control analog inputs of type 4 -20mA redundant. The objective is to
detect a physical quantity using a pair of devices, and calculate the average value as the representative
value of the physical quantity. At the same time we want to verify that the values of the two sensors are
consistent, namely that the two values consistently maintain a difference between them below a set
percentage.
The lack of coherence of the two sensors allows to identify faults in the two devices such as:

Page 54

· Non- operating (device short-circuited or disconnected or stuck on a fixed value)
· Prong of the devices , namely loss of linearity of conversion (identifiable when the difference

between the two values exceeds the maximum set percentage)
· Change of the response time of the devices (which leads to an inconsistency of signals)
· Some mechanical problems, such as the physical detachment of one of the two devices from the

support that connects it to the environment to be measured.

Defined IS1 and IS2 the value of the input currents of the two channels, this sensor reports in the output
Bout (or Wout) the average value of IS1 and IS2. The user can choose whether to express the average value
by a output Bout of type byte (8 bits) expressed in units of 0.1 mA or alternatively through an output Wout
of type Word (16 bits) expressed in units of 0,01 mA. So for example, a value of 100 in Bout indicates that
the average current in the two sensors is equal to 10.0 mA while a value of Wout equal to 1205 indicates
that the average current is equal to 12.05 mA.
The output type is BOut of default and requires fewer resources of the module, while the output of the
module type Wout is preferred when we demand greater detection accuracy.

 The output Bout imposes a maximum value detectable, constrained by the capacity of the variable
representation of type B, equal to 25.5 mA. Average values in excess of this limit will still be represented
as 25.5 mA.

 The type output Wout allows instead represent values greater than 25.5 mA, but in this case is
assessed in the documentation associated with the module the range of values for which it is guaranteed
the accuracy and / or the linearity of conversion.

The user can set the maximum allowable percentage difference between the two values IS1 and IS2, called
ID%, and the maximum time TF in which this condition is permissible. The difference is calculated with
reference to the signal IS1. When IS2 outside the range IS1 ± ID% you have inconsistency. The sensor
software will set the output XFault when IS1 and IS2 are constantly inconsistent for a time greater than TF
(adjustable from 0 to 2.55 seconds).
The ability to set a time inconsistency is very useful to avoid that spurious peaks of the values of IS1 or IS2
(typically at startup or during shutdown of a process) bring the system error condition. It should however
be borne in mind that the introduction of a filter time also increases the response time of the module to a
fault. The two values must therefore be as set in the function of the physical characteristics of the
equipment in question and of the sensors connected to it.

Ways of calculation of the inconsistency.
In Mode 0 the two analog devices with 4- 20mA output are assumed with identical characteristics in
output. The differences between the output values of the two sensors will be due only to the different
manufacturing tolerances and to the different positioning of the devices compared to the magnitude in the
measurement.
Sometimes it may not be easy to identify, when debugging , if the input sensors behave as expected. By
activating the outputs BOut1 and BOut2 (or WOut1 and Wout2) you can read the value of the two input
devices .

If instead you use devices with different signal linearization, or if you plan to compensate some systematic
differences between the sensors is possible, by setting the Mode 1, translate or amplify the signal from the
sensor 2 through two constants. The first constant allows to add to the value IS2 a fixed value selectable in
the range ± 20.00 mA, while the second constant allows to attenuate or amplify the signal up to 4 times .
In Mode 1 , if you enable debugging output BOut1 and BOut2 (or WOut1 and WOut2), please note that
BOut1 is identical to the value of the first input, while BOut2 represents the value of the second input after
the translation and amplification of the signal.

Page 55

Maximum and minimum current
The sensor software also provides the ability for the user to set a maximum and minimum current such that
if any of the two 4-20mA devices out of admitted range of work, it is set as an error. Typically the
thresholds are set slightly outside the normal range (minimum current of 3.8 mA, maximum of 21 mA), but
the user can adjust at will depending on the installed devices. Exceeding the maximum or minimum
threshold set immediately the error condition, and doesn’t apply the filter time.

List of error codes for the sensor
This sensor allows several types of error detected. For simplicity, it is preferred to have a single output that
is activated in the event of a fault (XFault) and return in another variable the error code (BFaultCode). In
this way, the expert user can go to understand that error occurred and possibly integrate a different error
handling routine from case to case. It should be noted that to the disappearance of error conditions, the
outputs related to the errors are resetted.
The error codes available are:

BFaultCode Description

0 No errors

1 Average current first sensor below the minimum set

2 Average current first sensor exceeds the set maximum

3 Average current second sensor below the minimum set

4 Average current second sensor exceeds the maximum set

10 Data collected from the two sensors inconsistent

100 No power on terminals A, or rupture of the internal ADC converters

200 Internal error of the board

In case of error with code 100 or 200, the read datamay not make sense, therefore the output value from
the function of the sensor is set to the max value allowed by the data type or rather 255 in case of Bout and
65535 in case of WOut.
The basic principle is that an error is prevalent with higher value on those with lower value. In case of
failure of the supply of the sensors, for example for detachment of the connector (terminals of type A), it
indicates the error 100 and not the error 1 or 3.

Example
In the chart below you can see a possible example of the behavior of the sensor as a function of two signals
IS1 and IS2.

Page 56

5.7.2.14 SAN3 Sensor

Electric type Analog sensor control with standard 4-20mA, both 2 wires and 3 wires.

The sensor power supply could be taken in parallel from the module power
supply (Vcc=A1, Gnd=A2) otherwise with a separate power pack.

Examples Analogic parameters monitoring, like temperature, current, vibration, etc.

Connections See examples. A+ stays for the power supply terminal and A- stays for
ground terminal of the board where the 4-20mA sensor is connect.
Nomenclature of A + and A-depends on the module (see General Hardware
Characteristics).

Parameters Average value representation mode, in Byte or Word.
Minimum and Maximum current allowed for the 4-20mA sensor.

Outputs BOut or WOut: detected value
XFault: Active in case of error
BFaultCode: error number when XFault is activated

Detectable device failures Overcurrent or undercurrent of the 4-20mA sensor, or device damages
(short circuit or open circuits) or problems with electric connections.

Behavior at startup At the start of the module the 4-20 mA sensor must be active and able to
provide data in line with the set parameters.

Page 57

 This kind of sensor will be shown in Gemnis Studio only on the modules equipped with analog input,
provided of “C” terminal.

This type of sensor was designed to control an analog input type 4-20mA.
The configuration of the sensor allows to detect some but not all of the possible failure of the analog
sensor.
In particular, this sensor is capable to detect:

· The failure of the device due to short circuits or disconnections;
· unusual currents in the device, below or above the set thresholds.

 This sensor alone is not able to detect:
· The “out of calibration” of the device 4-20mA, or loss of linearity of conversion or the lock on a fixed

value within the range of permissible current.
· Change of the response time of the device
· Mechanical problems, such as the physical detachment of the device from the support that holds it up

to the environment to be measured.

Some of these faults can be excluded by the user, case by case, based on the analysis of the machine or the
type of the 4-20mA device. For example, the exclusion of a fault on the out of calibration of the sensor can
be made using sensors that are certified to the level of security required. Otherwise the possibility of
mechanical detachment of the sensor can be excluded depending on the quality of its mechanical
installation.

This sensor shows the analog output detected by the 4-20mA device. The user can choose whether to
express this value through a BOut byte (8 bits) output expressed in units of 0.1 mA or alternatively through
a WOut type Word (16 bits) output expressed in units of 0, 01 mA. For example a 100 value of BOut
indicates that the current in the sensor is 10.0 mA while a 1205 WOut value indicates that the current is
12.05 mA.
The BOut is the default output type and requires fewer resources of the module while the WOut output is
preferred when is requested a greater detection accuracy.

 The BOut output imposes a maximum detectable value, dependent on the capacity of representation
of the B type variable, equal to 25.5 mA. Average values higher than this limit will be represented,
however, as 25.5 mA.

 The WOut output type allows, on the contrary, to represent values greater than 25.5 mA, but in this
case the user should value in the documentation the range of values for which is guaranteed the accuracy
and / or the linearity of conversion.

This software sensor also provides the ability for the user to set a maximum and minimum current such
that if the 4-20mA device exits from the working admitted range is set a mistake. Typically the thresholds
are set slightly outside the normal range (minimum current of 3.8 mA, maximum of 21 mA), but the user
can adjust at will according to the device. The exceeding the maximum or minimum threshold sets
immediately the error condition.

This sensor allows several types of detected error. For the sake of simplicity, we preferred to have a single
output that is activated in case of a fault (XFault) and report on another variable the code of the error
(BFaultCode). In this way, the expert user can understand which error occurred and possibly integrate a

Page 58

routine to manage errors differently depending on the type of the error. We remind that the disappearance
of error conditions, their outputs will reset.
The available error codes are:

BFaultCode Description

0 No error

1 Current sensor below the minimum set

2 Current sensor exceeds the maximum set

100 No power on terminals A or breakage of the internal ADC converters

200 Internal error of the board

In the case of error code 100 or 200, the read value may not make sense and therefore the output value
from the function of the sensor is set at the maximum value allowed by the type of data, or 255 in the case
of BOut and 65535 in the case of WOut.
The board error is prevalent on other errors. In case of sensor power failure, for example detachment of
the connector (terminal type) is shown the error 100 and not 1. The basic principle is that an error with
higher value is prevalent on those with lower value.

5.7.2.15 SSP2 Sensor

Electrical type Control of a pair of signals in the frequency range up to 4 kHz.

The power supply of the sensors can be taken in parallel with the module
(Vcc = A1, A2 = Gnd) or by separate power supply.

Examples Speed control and stop motors or other rotating parts.

Connections See the examples. With A+ we mean the power supply terminal and with A-
the ground terminal of the board to which the external sensors are
connected. The nomenclature of A + and A- is dependent on the module
(see General Hardware Characteristics).

Parameters Maximum permissible difference between the values measured by the two
channels (consistency) above a minimum threshold
Maximum allowable non-coherence time
Possibility to activate the detection of the direction of rotation

Outputs WSpeed: the average value in frequency detected by the two sensors
XZero: indicates when both sensors don’t detect movements for 1s.
XCw: indicates a clockwise rotation (when possible)
XCcw: indicates a rotation in the counterclockwise direction (when possible)
XFault: Active in case of error
BFaultCode: In case of error indicates the numeric error code

Page 59

Device failures detectable Some failures of sensors
Inconsistency between the values in the frequency of the two sensors, and
then all the possible failures that cause this inconsistency.

Start-up behavior One or both of the sensors must be active.
If you require the detection of the direction of rotation, at the start the
engine must be stopped or at least generate on the sensors a frequency
below the threshold of detection FRD.

 This type of sensor is displayed in Gemnis Studio only programming modules with frequency inputs,
type "F", suited to the detection of a pair of signals in frequency from 1 Hz to 4 KHz having a predefined
shape such that at least one of the two signals is always present.

Frequency measurement
This type of sensor was made to control redundant frequency inputs, usually representative of the speed of
rotation of a motor. The purpose is to detect a frequency signal by a pair of devices, typically a pair of
inductive sensors, and calculate the average value as the representative value of the speed of the system.
At the same time we want to verify that the values of the two frequency signals are coherent, or rather that
the difference between them is below a set percentage.
Failure consistency in frequency allows to identify faults such as:

· Failure of a single device, for example because short-circuited or disconnected, or oscillation on a
frequency inconsistent with that in the measurement.

· Change the response time of the devices (which leads to an inconsistency of signals)
· Some mechanical problems, such as the physical detachment of one of the two devices from the

support that connects it to the object to be measured, or a removal of the device from the object
to be measured such that there is a "loss of pulse" to the frequency measurement.

 The module detects and calculates frequency signals by the detection of two pulse sequences,
properly shaped, from devices that capture the alternation of these cams on a "phonic wheel" connected
to the rotating mechanism that you want to monitor. Please pay attention to the fact that the speed of
rotation of the mechanism is not equal to the measured value, but depends on the number of teeth of
the phonic wheel. Since normally the speed of rotation of the engine is expressed in revolutions / minute
the following conversion ratios are applied:

The user can set the maximum allowable percentage difference between the two values F1 and F2 , called
FD% , and the maximum TF in which this condition is permissible. The difference is calculated with
reference to the signal F1. When F2 exits from the range F1±FD% there is an inconsistency. The sensor
software will set the output XFault when F1 and F2 are constantly inconsistent for a time greater than TF
(from 0 to 2.54 seconds) .
The possibility to set a time inconsistency is very useful to avoid that spurious peaks and the values of F1 or
F2 (typically induced noise) bring the system to error condition. However you should consider that the
introduction of a filter time also increases the response time of the module to a fault . The two values
therefore must be set in the function of the physical characteristics of the equipment and of the sensors
connected to it.

Page 60

The inconsistency between the two signals is not calculated when the average frequency of the signal is
lower than a threshold value Fmin settable by the user. This is necessary to avoid that at low rotation speed
the % difference allowed between the two signals is reduced to zero values (expressed in units of 0.1 Hz) or
in any case to values that are too low to avoid that the signals are perfectly consistent . For example,
setting a maximum difference between the signals of 2% we have that around 10Hz frequencies, the two
signals must differ by a maximum of 0.2 Hz to be consistent. To avoid this effect, the user can set a
threshold of 0 to 25.5 Hz below which the coherence of the signals is no longer evaluated .

Motor stopped
This sensor is used to detect frequency values close to 0 Hz that is a measure of "motor stopped". For this
reason, the sensor provides an output defined XZero that is activated when the input frequency of the
signals of both channels is less than or equal to 1 Hz for at least one second.
The user may not use this output and monitor directly the function WSpeed with a comparator (see
operator GEQ) set with a threshold at will, depending on the application.

This sensor can identify certain types of faults on the sensing devices that are important to ensure the
correct determination of zero speed. In particular:

· Failure on consistency of activation of the sensors, in particular the case in which both are off. This
allows to detect the disconnection of an electric cable or a sensor or (using safe sensors) a fault
situation of the device.

· No power or incorrect voltage values on the stage that feeds the devices (A + terminal of the
module). This allows you to detect detachments of power supply that belong to both devices.

 This sensor alone is not able to detect common mode failures that affect simultaneously on both
sensing devices such as:
· Disconnection of the mechanical support that holds up both devices to the organ in motion or rupture

of the phonic wheel.
· Detachment of the power supply of both devices on a point downstream of the terminal A+ that

validates the supply voltage of the devices.
· Short circuit of the output stages of both devices at the same time or however in the period of time

between two starts of the organ in rotation of the output stages (for example due to strong
overvoltages)

For the safe detection of zero speed with this method are therefore very important some precautions that
do not relate to the module but the method of construction of the machinery and the wiring of the
devices mounted, among which we mention:
· Separate wiring of the devices to minimize the risk of a short circuit between cables, and in particular

to avoid point of branching of power supply of the two devices downstream of the terminal A+.
· The choice of various sensing devices (of different type or brand) to minimize the risk of common

cause failures.
· Assembling of the sensors on supports in order to avoid the possibility of contemporary detachment of

both devices or otherwise or to permit the exclusion of such a failure.

Finally, even if the sensor software should be used only to define the zero speed of an engine is however
recommended to make a verification in frequency of the two sensors in order to detect the inconsistency
of the two signals and in this way discriminate the case of a single device with output with a short circuit.

Defined F1 and F2 the value of the input frequencies of the two channels this sensor shows in the output
their average value expressed in 0.1 Hz units. So for example a WSpeed value of 1205 indicates that the
average frequency is 120.5 Hz.

Page 61

Direction of rotation
Using appropriately shaped cams and activating the flag "Enable verification of the direction of rotation"
this sensor has two additional logic outputs defined:

XCw indicating a clockwise rotation
XCcw indicating a counter-clockwise rotation

The detection of the direction of rotation is done by identifying the time difference between the phase
shifts of the signals of the two sensors and is therefore only possible under certain "mechanical" conditions
and only as long as the difference is measured precisely by the board. The general principle provides that
the detection of the direction of rotation is made at low speed below a minimum frequency of said FRD
(usually equal to 25 Hz, for further details see the technical specifications), and then maintained at high
speed. It follows that there are also constraints of maximum acceleration of the engine for determining the
direction of rotation.
At very low speeds, next to 0Hz, there may be inconsistencies between the directions of rotation identified
by processors, and so it follows that, under FRD is allowed the case where both outputs XCw and XCcw are
disabled.
On the contrary it is not allowed that the system is in high speed (frequency of both channels exceeding
FRD) with no direction of rotation identified. In this case the module activates the Fault output.

 This sensor, if enabled, is able to detect the direction of rotation of a cam only if certain parameters
are met, and in particular:
· The shape of the phonic wheel of detection and the positioning of the device follows strict rules (see

technical documentation)
· The acceleration of the phonic wheel must be lower than the prescribed maximum values.
· The sensing devices must be able to provide appropriate signals to the requirements, in particular

they mustn’t introduce excessive phase delays such as to prevent a correct calculation of the phase
shifts between the signals processed by the module.

Errors
This sensor allows several types of detectable error. For simplicity we have preferred to have a single
output that is activated in the event of a fault (XFault) and report on another variable the code of error
(BFaultCode). In this way, the user can go to an expert to understand which error occurred and possibly
integrate a routine for error management different from case to case. We remind that the errors are reset
at each cycle and then, disappearing the error conditions, they are deleted.
The error codes are:

BFaultCode Description

0 No error

1 Speed detected by the two sensors too different to the set parameters

10 Both sensors are not present

11 The direction of rotation has been required but the system couldn’t give a result, for
example due to excessive accelerations or wrong shape of the cams

12 The module has detected input frequencies higher than the maximum allowed (4 kHz).

100 No power on A terminals

200 Internal error of the board

In the case of error code 12, 100 or 200, the read data may not make sense, and then the WSpeed output
value is placed on the maximum allowable value of 65535 while the outputs Xzero, XCw and XCCw are set
to zero.

Page 62

The error of the board is prevalent on other errors. The basic principle is that an error is prevalent with
higher value on those with lower value.

In the diagram below you can see a possible example of the behavior of the sensor as a function of two
signals F1 and F2.

5.7.2.16 SSP4 Sensor

Electrical type Control of a frequency signal up to 4KHz.

The sensor power supply can be taken in parallel with the module (Vcc = A1,
A2 = Gnd) or by separate power supply.

Examples Control speed and stop motors or other rotating parts.
Connections See the examples. With A+ we means the power supply terminal and with A-

the ground terminal of the board to which the sensor is connected. The
nomenclature of A + and A- is dependent on the module (see General
Hardware Characteristics).

Parameters None
Outputs WSpeed: the value in the frequency detected by the sensor

XZero: indicates when the module does not detect movement for 1 second.
XFault: Active in case of error
BFaultCode: In case of error indicates the numeric error code

Device failures detectable Overspeed of the sensor
Start-up behavior

Page 63

 This type of sensor is displayed in Gemnis Studio only on modules with frequency input, type "F",
suited to the detection of signals in frequency from 1 Hz to 4 kHz.

 This sensor alone is not able to detect electrical faults of the device such
as the short circuit to positive or to the mass of the connecting cables or the
detachment of the signal cable. It is not even able to detect functional
failures such as breakage or short circuit of the output transistor of the
device.

 The output of this sensor should not be used alone for safety related
functions.

Possible faults

This type of sensor is born to control a frequency input up to 4KHz , usually the speed of rotation of a
motor. Since this sensor alone is not able to detect many types of fault , it should not be used alone but
always in conjunction with other signals to produce a safety function of functional type .
For example two or more sensors of this type can be used to check a correlation of movement between
two mechanical members which must act jointly . With a first sensor we can monitor the frequency of
rotation of a motor and with a second one the frequency of rotation of a second wheel connected to the
motor through a pulley . The function performed by the module would then verify the correlation between
the frequency of rotation of the two bodies and , in this way , that the devices on the field work and that
the ratio between the two values is maintained at preset ratios (thus highlighting the problems of slippage
or others). A failure of one of the devices would then be intercepted , not so much by the safety function of
the sensor (XFault output) but from the Application Program .

 The module processes signals in frequency by the detection of a sequence of pulses coming from a
device that captures the alternation of the cams present on a "phonic wheel" connected to the rotating
mechanism that you want to monitor. Please pay attention to the fact that the speed of rotation of the
mechanism is not equal to the measured value, but depends on the number of teeth of the phonic wheel.
Since normally the speed of rotation of the engine is expressed in revolutions / minute apply the
following conversion ratios:

This sensor can detect some possible faults on the input devices in particular verify that:
· The frequency of the input signal is lower than the maximum permissible value for the module (4

KHz).

Page 64

Motor stopped
This sensor can also detect frequency values equal or close to 0 Hz that is a measure of "motor stopped".
For this purpose, the sensor provides an output defined Xzero that is activated when the input frequency is
lower than or equal to 1 Hz for at least one second.
You may not use this output and go to directly monitor the function WSpeed by a comparator (see operator
GEQ) set with a desired threshold.

This sensor can detect certain types of faults on the detection device which are important for the detection
of zero speed. In particular, we note:

· No power or incorrect voltage values on the stage that feeds the devices (A + terminal of the
module). This allows to detect detachments of the power supply of all devices.

 This sensor alone is not capable of detecting the following types of failures:
· Short circuit or opening of the stage of output of the device.
· Short circuit to positive of the cable that give power supply to the device.
· Disconnection of the cable that brings the frequency signal to the module.
· Mechanical disconnection of the support that holds on the device to the moving organ or breakage of

the phonic wheel.
· Removal of the power supply on a downstream point of the Ax terminal that validates the supply

voltage.

For a safe detection in the zero speed with this method are therefore necessary additional measures, in
particular the testing of the signals coming from this sensor with other signals correlated.

Defined as “F” the value of the input frequency this sensor reports in output their value expressed in units
of 0.1 Hz So for example a WSpeed value of 1205 indicates that the average frequency is 120.5 Hz.

This sensor allows several types of error detected. For simplicity, we preferred to have a single output that
is activated in the event of a fault (XFault) and return on another variable of the error code (BFaultCode). In
this way, the user can go to an expert to understand which error occurred and possibly integrate a routine
for error management different from case to case. We remind that the errors are reset at each cycle and
then, disappearing the error conditions, they are deleted.
The error codes are:

BFaultCode Description

0 No error

12 The module has detected input frequencies higher than the maximum allowed (4 kHz).

100 No power supply on A terminals

200 Internal error of the board

In case of error code 12, 100 or 200 the read data may not make sense and therefore the output value from
the function of the sensor is placed at the maximum allowed value equal to 65535 on WSpeed while the
output XZero is set to zero.
The error on the board is prevalent on other errors. The basic principle is that an error with higher value is
prevalent on those with lower value.

Page 65

5.7.3 Functional blocks

The Functional Blocks.
From functional blocks Tab you can select one Functional Block with the mouse and drag it to the desktop
area. Inside Gemnis Studio this is equivalent to creating a function whose input variables and output are
available on "connection points" that can be connected to other points within the desktop.

Each functional block so created has on the left side connection points related to the input of the function
and to his right side connection points related to output variables. The coded name of the safety function is
written in the upper part of the box while on the upper left is automatically created a progressive ID useful
to discriminate more functional blocks of the same type.
Within the area of the functional block are represented the names of input and output variables, close to
the respective connection point. In the lower part of the functional block are sometimes present frames
that contain the currently selected values for the parameters of the function.
The function associated to each block can have several input and output connection points and can
produce may output data, whose meaning and values depend block-by-block. It is necessary that you read
the documentation associated with each block (see later) to fully understand them.
Variables of functions can be of different types (see box) the variable name and the color of the connection
point are helpful to understand the type.
Unlike the sensors, the connection points of the functional blocks must always be all connected otherwise
the program will not compile.

 Studio Gemnis is able to manage binary and numeric type information. The binary information (0,1)
are identified by the prefix "X", the numerical 8 bit information by prefix "B" and the 16 bit information by
prefix “W”.

Changes on functional blocks.
Nearly every functional block can be modified and to do it just clicks with right mouse button on the
functional block area, and then click the block button Property to access the Edit tab (or simply double-click
it) or click on the button Delete to delete it from your desktop. Each block has its own specific properties
but some features are common. Moreover, each functional block is associated with a specific point of this
document, which you can immediately access by the help button of the form (the icon with the “i” symbol).

Page 66

Parameters.
Almost all functional blocks are both configurable by values and by variables. It is possible to change the
underlying function for a functional block not only on the basis of some constants, but also vary the
number of inputs or outputs. For example, the functional blocks related to basic logical functions (AND, OR,
etc.) allow a number of inputs which vary from 2 to 5 while other functional blocks such as DELAY allow the
modification of the type and value of the delay times.
The parameters of a functional block are listed in their own tab and you can modify them. The parameters
that are not immediately visible (such as the number of inputs or outputs) and theirs value are graphically
displayed in small rectangles that inside the functional block.

Page 67

Diagram
In the properties of each functional block is present the Diagram Tab that shows a summary of the function
carried out by functional block. For more information, please click on the info icon to be routed to the
definition of functional block within this document.

Page 68

5.7.3.1 Functional block AND

Name AND Base Boolean function AND

Inputs XIn (n) Inputs of type X. Each input can be individually negate.

Parameters Inputs number From 2 to 8.

Outputs XOut Logical AND function of the inputs

The logical AND function output is equal to 1 only when all inputs (eventually after the possible negation)
are 1. The following example shows the truth table of the AND function with two inputs (XIn0 and XIn1).

5.7.3.2 Functional block OR

Name OR Base Boolean function OR

Inputs XIn (n) Inputs of type X. Each input can be individually negate.

Parameters Inputs number From 2 to 8.

Outputs Xout Logical OR function of the inputs

The logical OR function output is equal to 1 if at least one input (eventually after the possible negation) is 1.
The following example shows the truth table of the OR function with two inputs (XIn0 and XIn1).

Page 69

XIn0 XIn1 XOut
0 0 0
0 1 1
1 0 1
1 1 1

XIn0 XIn1 XOut
0 0 0
0 1 0
1 0 0
1 1 1

5.7.3.3 Functional block XOR

Name XOR Base Boolean function XOR

Inputs XIn (n) Inputs of type X. Each input can be individually negate.

Parameters Inputs number From 2 to 8.

Outputs XOut Logical XOR function of the inputs

The logical XOR function output is equal to 1 if an odd number of inputs (eventually after the possible
negation) is 1. The following example shows the truth table of the XOR function with two inputs (XIn0 and
XIn1).

5.7.3.4 Functional block NAND

Name NAND Base Boolean function NAND

Inputs XIn (n) Inputs of type X. Each input can be individually negate.

Parameters Inputs number From 2 to 8.

Outputs XOut Logical NAND function of the inputs

The logical NAND function output is equal to 0 only when all inputs (eventually after the possible negation)
are 1. The following example shows the truth table of the NAND function with two inputs (XIn0 and XIn1).
The NAND function is the logical negation of function AND.

Page 70

XIn0 XIn1 XOut
0 0 0
0 1 1
1 0 1
1 1 0

XIn0 XIn1 XOut
0 0 1
0 1 1
1 0 1
1 1 0

5.7.3.5 Functional block NOR

Name NOR Base Boolean function NOR

Inputs XIn (n) Inputs of type X. Each input can be individually negate.

Parameters Inputs number From 2 to 8.

Outputs XOut Logical NOR function of the inputs

The logical NOR function output is equal to 0 if at least one entry (eventually after the possible negation) is
1. The following example shows the truth table of the NOR function with two inputs (XIn0 and XIn1).
The function NOR is the logical negation of function OR.

5.7.3.6 Functional block NXOR

Name NXOR Base Boolean function NXOR

Inputs XIn (n) Inputs of type X. Each input can be individually negate.

Parameters Inputs number From 2 to 8.

Outputs XOut Logical NXOR function of the inputs

The logical NXOR function output is equal to 0 if an odd number of inputs (eventually after the possible
negation) is 1. The following example shows the truth table of the NXOR function with two inputs (XIn0 and
XIn1).
NXOR function is the logical negation of function XOR.
Note that the NXOR function is equivalent to the "equal" function, i.e. XOut output is active when XIn0
equals Xin1.

Page 71

XIn0 XIn1 XOut
0 0 1
0 1 0
1 0 0
1 1 1

XIn0 XIn1 XOut
0 0 1
0 1 0
1 0 0
1 1 0

5.7.3.7 Functional block NOT

Name NOT Base Boolean function NOT

Inputs XIn

Parameters None

Outputs XOut Logical NOT function of the input

The logical function NOT inverts the XIn input. Below is the table of truth about NOT function.

5.7.3.8 Functional block TRUE

Name TRUE Base Boolean function TRUE

Inputs None

Parameters None

Outputs XOut Fixed output value of 1.

The functional block TRUE output is always 1. This function is useful as input to other functional blocks in
case you need to set an always active value.

5.7.3.9 Functional block FALSE

Name FALSE Base Boolean function FALSE

Inputs None

Parameters None

Outputs XOut Fixed output value of 0.

The functional block FALSE output is always 0. This function is useful as input to other functional blocks in
case you need to set an always off value.

Page 72

XIn XOut
0 1
1 0

5.7.3.10 Functional block SET/RESET

Name SET/RESET Basic memory logic function, Reset dominant

Inputs XSet
XReset

When input XSet is active sets output to 1
When input XReset is active sets output to 0

Parameters None

Outputs XOut Value of output. At startup value is 0.

The functional block SET/RESET is the basic logic
memory function. When XSet input becomes
equal to 1 XOut output is set to 1 and remains so
even if XSet back to 0. When XReset input
becomes equal to 1 XOut output goes to 0 and
remains so even if XReset back to 0. In case of
contemporary activation of XSet and XReset the
latter is prevailing and Xout output goes to 0
(Reset dominant).

5.7.3.11 Functional block MEM

Name MEM Generic memory function, Reset dominant

Inputs XIn or BIn or WIn
XSet
XReset

The Input with the value to store
When input XSet is active sets output to Input value
When input XReset is active sets output to 0

Parameters None

Outputs XOut or BOut or
WOut

Value of output. At startup value is 0.

The functional block MEM is the generic memory
function and can store the value of the input
variable activating the input XSet.
Unlike the functional block SET/RESET this block
allows you to store data of type X, B and W.
Whatever the type of input data, when input
XReset is activated the output becomes equal to
0. In case of simultaneous activation of the inputs
XSet and XReset, is the latter that prevails and the
output is forced to 0 (reset dominant).

Page 73

In the case of X type variables pays attention that
activating XSet stores the value assumed at input
Xin, and then, if this were to 0, the output is set to
0.
The basic functional block SET/RESET can be
interpreted as a specific case of this functional
block with the input of type X always set at 1.

This block is usually used for storing working conditions and to avoid that they can be changed
involuntarily, or to allow the change only to those who have the necessary authorizations. Consider the
case where a modal selector is used to vary the functions performed by a machine. If you want to change
the settings should be confirmed by means of a button you can use the MEM functional block (see example
in the picture) by connecting in cascade with Selector sensor, and using the button as confirmation of
storage. If you want only some users are allowed to change these settings you can use a key-enabling
contact instead of the button.
Finally, pay attention to the fact that at power-on the MEM function has output value equal to 0. In the
example in picture even if the switch indicates the start position 1 the output of the MEM function will
remain at 0 until the button is pressed.

5.7.3.12 Functional block START

Name START Control function for start process

Inputs XIn
XStart

Is the input signal to be controlled
Is the controller signal

Parameters Start Type Can take three values:
Controlled Start on XStart rising edge (default)
Controlled Start on XStart falling edge
Manual/Automatic Start, activated by the presence of XStart

Outputs XOut Output value

Page 74

The functional block START is used to control an XIn input signal. When Xin input has value 1 that value is
transferred on output as soon as the XStart input satisfies the condition of the parameter. As soon as the
XIn input takes the value 0 is immediately transferred on Xout output. This function is used for the
processes activation functions and to prevent automatic restarts.

Through this function it is possible to check out some external failures, such as sticking of the Start
pushbutton contacts.
The functional block START can take three different configurations:

1) Start checked on rising edge of control signal XStart
(default configuration). In this configuration, the output signal
XOut is activated (if the XIn input is 1) when you press the
Start button.

2) Start checked on the falling edge of control signal XStart. In
this configuration, the output signal XOut is activated (if the
XIn input is 1) when you release the Start button. This
configuration is useful when the same Start pushbutton
makes another task on rising edge. You can perform two
different actions in sequence with a single button.

3) Start active on the presence of control signal XStart. This
configuration does not allow control over the Start
pushbutton but it is very useful to verify the feedbacks of
external contactors connected to the outputs of the module.

 The Start function active on the presence of the start control signal (version 3) can also be used as
startup function but must be verified that, if the Start pushbutton sticking, machine cannot automatically
restart unexpectedly. To prevent this, other functional blocks may be necessary, or eventually to check
that machinery operation mode do not allow such an event.

Page 75

5.7.3.13 Functional block POWER ON

Name POWER ON Signal active only in the first program execution cycle

Inputs None

Parameters None

Outputs XOut The first cycle is 1, then 0 is always

This functional block is useful to eventually make some tests at every restart of the module. For instance,
this block can force execution of a test on control devices of machinery each time you start it.

5.7.3.14 Functional block TRIGGER

Name TRIGGER Detect the rising or falling edge of an input signal

Inputs XIn Input to be evaluate

Parameters Type face The chosen edge (rising or falling) of the input signal.

Outputs XOut Is active only at detection of the chosen edge of Xin

The TRIGGER functional block evaluates a XIn input and
generates in XOut a pulse of duration equal to one cycle of
execution when it detects the chosen front of the signal Xin.
If the function provides the detection of the rising edge and at
the start XIn is positive, on XOut a pulse is generated in output.

Page 76

5.7.3.15 Functional block DELAY

Name DELAY Returns a type Delay Off or Delay On signal

Inputs XIn
(BTime)

The input signal
(Optional) the value of time Delay

Parameters Delay Type
Full Scale
Time or input

Whether to perform a Delay On or Delay Off function
Indicates the full scale value of the delay
Indicates whether the delay will be fixed or variable according to the
value of a new input BTime or WTime

Outputs XOut The delayed signal

This block makes Delay On or Delay Off type timings.
A “Delay On” delay type implies that XOut activates later than XIn
with a delay equal to the set time. As soon as XIn goes to 0 also
XOut immediately deactivates. If during the initial timed phase the
input signal goes to zero and then back to 1 the timer restarts.

A “Delay Off” delay type implies that XOut activates immediately
when XIn is active but, when XIn is deactivated, XOut continues to
remain active, with a delay equal to the set time. If during the late
timed phase the input signal is set and reset again, the timer
restarts from the moment of the last resetting.

The delay time can be expressed as a fixed value or a variable.
In the case of fixed delay it is necessary to select the full scale of the timer that you intend to use, and then
specify the time within the permissible range. There are several ranges and, function of the chosen one, the
resources used and the precision of timing change. In particular ranges are:

Code Full Scale Unit of measure Precision Resource Type/Input

1 from 0.01 to 2.55 s 0.01 s -0 +0.01 s B

2 from 0.1 to 25.5 s 0.1 s -0 +0.1 s B

3 from 1 to 255 s (4 min) 1 s -0 +1 s B

4 from 1 to 65535 s (18 h) 1 s -0 +1 s W

Note so that it is possible, with the same timing, have very different precisions. For example, you can set a
delay time of 0.8 seconds using either the full scale Code 1 or Code 2 but that the former has a better
precision.
If you choose to use a variable time as a function of an input, then in the functional block a new input
appears, having the same type of resource type used. So if for example you chose the full scale code 1 the
new input will have “Btime” name, it will be of B type, and values in the input connection point will be
interpreted in 0.01 seconds units of measure. If instead we chose the full scale code 4 then the input would
name “Wtime”, it will be a W type data, and values present in this input will be interpreted in 1 second
units of measure. Changing the type of full scale can therefore changes the type of the connection point. In
this case, any existing connections will be deleted given the diversity of two types of underlying data
(Gemnis Studio does not allow connections between different data types).

Page 77

If the input BTime (or WTime) change its value while the timing process is in execution, the new value will
be compared, on each execution cycle, to time already passed. So, if BTime increased its value, there will be
an automatic extension of the Delay duration. In the case BTime decrease its value up to descend below
the time already passed there would be the immediate Delay termination.

5.7.3.16 Functional block FILTER

Name FILTER Filter noise from a signal

Inputs XIn
(BTime)

Incoming data to evaluate
(optional) Input filtering time (by 0.01 to 2.55 sec)

Parameters Time or input Indicates whether the filtering time will be fixed or variable according to
the value of a new input BTime

Outputs Xout The filtered output. At startup it is 0.

The functional block FILTER, as the name indicate, filters XIn input
signal from certain noise, and return the filtered output signal
XOut. The filtering function is made so that, whatever the input
signal, the output signal will not change until the input signal does
not remain constant for the minimum set time.
This functional block can be very useful in the presence of
incoming signals strongly disturbed or to eliminate any contacts
rebounds with excessive duration.
Note that the Gemnis series modules filter in hardware contacts
rebounds having a less than 10 ms duration. This filtering alone is
sufficient for the vast majority of mechanical devices.

 Attention! Inserting this software filter introduces a delay in detecting the input signal which you must
take into account in assessing the overall response time of the module.

5.7.3.17 Functional block PULSE

Name PULSE Returns a Delay Off signal type selected on the edge of the input

Inputs XIn
(BTime)

The input signal
(Optional) the value of time Delay

Parameters Edge type
Time or input

The chosen (rising or falling) edge of the input signal.
Indicates whether the pulse duration will be constant or variable
according to the value of a new input Btime

Outputs XOut The signal generated from XIn depending on the parameters selected

Page 78

This block generates a fixed length signal on XOut starting counting
the time on chosen edge of XIn input signal.

If the chosen edge is the rising one, the XOut output signal will
immediately activate with XIn and will stay for the chosen time. If
during the timed phase, the input signal deactivate and activate
again, the time count restarts from the moment of the last rising
edge of XIn.

If the chosen edge is the falling one, XOut activate when XIn goes
from on to off and will stay for the chosen time. If during the timed
phase, the input signal is activated and deactivated again, the time
count restarts from the moment of the last falling edge of XIn.

The delay time can be expressed as a fixed value or a variable.
In the case of fixed delay is sufficient to give the time (from 0.01 to 2.55 s) that you intend to use.
If you choose to use a variable time as a function of an input value then in the functional block appears a
new input named “Btime” and values present in this entry will be interpreted in 0.01 seconds units of
measure. So for example a value of 15 in the BTime input is interpreted as a time of 0.15 seconds. If the
input BTime change its value while the timing process is in execution, the new value will be compared, on
each execution cycle, to time already passed. So, if BTime increased its value, there will be an automatic
extension of the pulse duration. In the case BTime decrease its value up to descend below the time already
passed there would be the immediate pulse termination.

5.7.3.18 Functional block CLOCK

Name CLOCK Generates pulses with pre-established fixed rate

Inputs None

Parameters Clock Type
(Period)

The clock type
(Optional) the clock period

Outputs XOut The clock output

This functional block generates an infinite sequence of pulses having 10 msec duration and frequency
depending on the chosen Clock and in particular:

1) Fixed Clock: generates a pulse every 0.1 seconds
2) Fixed Clock: generates a pulse every second
3) Fixed Clock: generates a pulse every hour
4) Adjustable Clock: generates a pulse according to the selected time. The period is selectable

between 0.01 and 2.55 seconds with a precision of -0 +0.01 seconds.
5) Adjustable Clock: generates a pulse according to the selected time. The period is selectable

between 0.1 and 25.5 seconds with a precision of -0 +0.1 seconds.
6) Adjustable Clock: generates a pulse depending on the period. The period is selectable between 1

and 255 seconds with a precision of -0 +1 second.
7) Adjustable Clock: generates a pulse according to the selected time. The period is selectable

between 1 and 65535 seconds with a precision of -0 +1 seconds.

Page 79

The adjustable clock use more system resources.
Please note that the internal clock of the module is not suitable for measurements of time with the
precision required to play day clock function.

5.7.3.19 Functional block ERROR

Name ERROR Set the module in Error state (see ERROR State.)

Inputs XIn Input that, when activated, puts the module in Error state

Parameters Error code The module error code (from 1 to 16).

Outputs No

This functional block has a function different from everyone else because, if invoked, sets the module in
Error state with a particular error level, which consists in:

1) Block execution of the Application Program in the moment when this functional block is invoked
2) Put the module in safe state with all safety outputs open
3) Keep unsafe output signal in the last state achieved
4) Highlight the error code on LED of processors (P1 and P2) using a sequence of flashes which indicate

the Error Code.
5) Send the same error code on communication ports, including USB port
6) Continue to generate pulsed signals on T type clamps in order to maintain the active view of the LED

associated with inputs.

This functional block is generally used to stop execution of the program when the Application Program has
detected a malfunctioning external devices such that gravity is necessary to block entirely, in safe mode,
the functions of the module.
Almost all Sensors report an output called “Xfault” that, if active, implies the detection of a malfunction on
the external device connected, such as a short circuit. Typically this type of malfunction does not allow
continuation of safety functions performed by the module but it requires the intervention of a maintainer
who verify the failure, resolve it and finally restart machine. The functional block ERROR is typically
connected to the Fault output of various Sensors in order to highlight, with different error codes, where the
fault occurred. The parameter "error code" allows you to indicate, with a number from 1 to 16, a code that
will be displayed as a sequence of blue flashing on the processor LEDs and that will be send on the
communication ports (USB, COM, for other ports see the documentation attached) with a string such as
"[ERROR xx]" where xx is the Error Code.
The functional block ERROR can also be invoked in other parts of the Application Program, such when using
many unsafe Sensors configured to detect functional failures anyway. For example, in the case of a set of
devices where a given situation can't physically happen, detecting that condition can still be conveyed on a
functional block ERROR for detection of a fault.

This structure allows a very flexible fault management because it is possible, for each Sensor or in any State
analysis, to choose different behaviors in case of fault detection. Programmer can opt between an
immediate stop, a managed stop, specific error code for the most important cases, a common error code
across multiple devices (putting in OR the respective XFault signals) and so on.

Page 80

Note, as example, diagram below where we assume that a machine has an emergency pushbutton for
emergency stops and two inductive sensors, both connected to the same guard, and that therefore should
activate and de-activate always almost simultaneously.
(Note: without additional measure this example is not safe, it is only for ease of analysis).

In this example, the three Sensors are AND connected so that in case one of the three devices opens the
emergency exit opens. If the Sensor that controls the mushroom detects a fault, the module stops with
error code 1. The two Sensors that control the inductive sensors devices are not able to detect external
failures but knowing that they must move coherently we can detect at least a functional failure in case one
of the two has a failure or a short circuit. The XOR circuit, downstream of the two S1E type Sensors output,
turns on when the two signals are different. To avoid problems due to small rebounds the XOR functional
block output is connected to a timer DELAY ON type with a fixed time of one second. Only if the two
sensors have different outputs for a time greater than 1 second, then the DELAY functional block activate
the ERROR ones, which will put the module in Error state with error code 2.

Page 81

5.7.3.20 Functional block MESSAGE

Name MESSAGE Sends a message on port USB and COM

Inputs XIn
(BMsg)

On the rising edge of XIn appends a string on the transmission buffer
(Optional) Entry with the ID of the message to be sent

Parameters Fixed message or
from input
Send Timer

Indicates whether the message will be chosen from the list messages or if
it will be the numeric value input BMsg
Indicates whether the selected message will be preceded by the value of
the internal timer (only from Kernel 11)

Outputs No

The functional block MESSAGE sends a message on the USB port and, if present, the COM port. Messages
to be sent must have been previously loaded into the Messages Tab within the current Project. Messages
loaded are automatically indexed with a progressive ID, 0-based. In the picture you can see an example
where 4 messages are loaded and a fifth one is being loaded.

To load a message just type a text in the Message field, and then press the button Add Message. The flag
“Has Return" indicates whether after the text you want to add a newline character.
A maximum of 127 messages can be inserted and they can be up to 127 characters long one but it is
recommended, to avoid unnecessarily wasting of program memory and to not consume transmission
bandwidth, to keep them the shorter possible. You can use all non-control ASCII characters (0x20 to 0x7F
from) with the exclusion of the square brackets and braces that are reserved. All messages generated
independently by the module are in fact enclosed in square brackets or braces, such as "[ERROR 01]", so
that any external program listening can discriminate the strings generated by the application program and
those generated by the module itself.
Sending the message occurs on the positive edge of Xin, to avoid the generation of multiple and
consecutive messages.
Alternatively, you can send a variable message, that is the numerical value (expressed in hexadecimal) of
the Code input, during the rising edge of input Xin.

If you are using a module with Kernel 11 is possible by setting the appropriate flag, precede the above
message identified by the value of the internal timer when sending a message. This feature can be useful to
identify a posteriori the time when the event occurred.

Page 82

The internal timer expresses the value in seconds (4 bytes) and centiseconds (1 byte) passed from the time
the module. Such values are expressed in hexadecimal.

If you are using a module with Kernel 11 is possible, by setting the appropriate flag, precede the above
identified message by the value of the internal timer when sending a message. This feature can be useful to
identify after the time when the event occurred.
The internal timer expresses the value in seconds (4 bytes) and centiseconds (1 byte) passed from the start
of the module. Such values are expressed in hexadecimal.

 Please note that messages should not perform safety functions and serve solely for informational or
debugging functions. In case multiple messages are generated simultaneously from the Application
Program, they will be inserted, in the order of generation, inside the transmission buffer and then
transmitted in sequence. If there is an excessive generation of messages, such as to fill the transmission
buffer, the last messages to be transmitted may be lost (one reason more to create the shorter possible
strings).

Messages are sent simultaneously from the USB port and from the COM one if present.

 USB port, by default, is enable to send messages generates by the Application Program. However, if
they are generated in excessive amounts, can be stacked to monitor and debug commands that are
normally transmitted between Gemnis Studio and the module and slow down or prevent the display of
the module status. To disable the transmission of messages on USB port it is necessary to set the control
flag in Project form (only for modules with Kernel 11), or use the System Command P06.

5.7.3.21 Functional block EQU/GEQ/LEQ

Name GEQ/EQU/LEQ Make a numerical comparison between two values of type B or W and
indicates the result in Boolean format (X)

Inputs BIn or WIn
(BCode or
WCode)

Data value to be compared
(Optional) Second input with the data value to compare

Parameters Data type:
 B
 W
Comparison type:
 GEQ
 EQU
 LEQ
Compare with:
 Constant
 Input xCode

Performs a comparison between B type (Bytes) values
Performs a comparison between W type (Word) values

Set Xout if xIn > = reference value
Set Xout if xIn = reference value
Set Xout if xIn < = reference value

The reference value is a constant
The reference value is the second Input, BCode or WCode

Outputs XOut Indicates whether the result of the comparison is true or not

The functional block GEQ (EQU, LEQ) makes a comparison between Byte or Word data type. The
comparison varies depending on the " Comparison type" parameter which can be:

Page 83

· GEQ (Greater or EQual). Checks if the input is greater or equal to the reference value.
· EQU (EQUal). Checks if the input is equal to the reference value.
· LEQ (Lesser or EQual). Checks if the input is lesser or equal to the reference value.

The input value can be compared with a constant or with a second input, in each case of the same
numerical type. Comparisons between different types of data are not allowed.

5.7.3.22 Functional block COUNTER

Name COUNTER Pulse counter

Inputs XIn
XReset

Input data to be counted
Counter reset input

Parameters Limit Value

XIn Edge

The maximum value of the counter, once reached the counter restart
from 0
Indicates whether the count is made on rising or falling edge of XIn

Outputs BOut Counter value. At startup it is 0.

This function counts the number of edges (rising or falling) present on input XIn and reports the count on
BOut. When the Limit Value is exceeded, the counter is reset to 0. When XReset input is activated, counter
BOut will be reset.
The maximum value allowed for the Limit Value is 254.
The function is XReset dominant, so if XIn and XReset are simultaneously activated BOut is set to 0.

5.7.3.23 Functional block LKTBL

Name LKTBL Conversion table of data of the same type

Inputs BIn Incoming data to convert

Parameters Data Number The number of data table

Outputs BOut Converted data output. At startup it is 0.

The functional block LKTBL (LOOKUP TABLE) converts an input value of type B in another output value of
type B through a two column conversion table having data chosen by programmer. In practice the input
value of BIn is compared with the list of n values ("Data Number" parameter) inside the first column of the
table. If the data is found then BOut takes the value in the second column of the same table otherwise
BOut remains unchanged.
This type of block is used in the conversion of data from data sources of type B in order to adapt them to
other blocks.
In the following example, a machine is equipped with an emergency stop and a magnetic sensor which
control a guard. The safety output OS1 stops immediately the machine as soon as the guard will open or if
emergency mushroom is pressed. A second safety output OS2 is controlled by a DELAY function (delay off)

Page 84

where delay time is variable depending on the position of a modal switch. Data from the selector have
values ranging from 1 to 4 (0 in case of failure) as a function of selector position. To convert these values in
different time values it is used a LKTBL functional block having a 5 values table. As you can see in the figure,
the selector switch in the first position generates a 1 value that is converted from LKBL block 15 value
which is in turn interpreted by the DELAY function as 1.5 sec value (15 expressed in units of 0.1 seconds
means 15 × 0.1 = 1.5 seconds) of the delay time. Similarly in positions 2, 3 and 4 values are converted into
time delay of 3, 4.5 and 6 seconds. Note that a data in the table was also provided for the case in which the
LKTBL input is 0, i.e. when the selector sensor has identified a fault and then produces a output value of 0,
in this case setting that the second safety output stops the delay immediately having given a data equal to
0.
(Note: this example lacks totally the sensors fault management).

Warning: If the input value is not present in the table for default LKTBL output has the value 0.

Page 85

5.7.3.24 Functional block LDC (LOCK DOOR CONTROL)

Name LDC Functional block to control door lock system

Inputs XClosed
XLocked
XLock
XUnlock
XReset

Input that indicates the door is closed
Input that indicates the door is locked
Input to request the door locking
Input to request the door unlocking
Input to reset the functional block in case of error

Parameters P0: Locking Mode

P1: Lock type
P2: Unlock type
P3: Delay XOut
P4: Unlock
autonomous
P5: Error filter

Indicates whether the door is locked with XDL output off (default, spring
locking principle or "D") or active (locking principle “E”)
Indicates the evaluation mode of the XLock signal
Indicates the evaluation mode of the XUnlock signal
Allows to specify a short delay on the XOut activation
Allows the system to unlock in an autonomous way, without control
signals
Sets a filter time for the error conditions.

Outputs XOut
XDL
XFault
BState

Output indicating that the door is closed and locked
Door lock Signal
Output indicating the detection of a fault condition
The state of the functional block

This functional block has been specifically made to simplify development of Application Programs which
need to control the lockable guards of machinery. It takes account of various combinations which may
happen in the real world and typical problems due to the mechanical movement of the physical devices.

The inputs have the following functions:
· XClosed: The signal from the device that detects the position of the door. Can come from a

separate device or from the same device that provides for the locking of the door. It is understood
that the input signal is positive when the door is closed.

· XLocked: The signal from the device that will block the port (i.e. switch with solenoid). A positive
value indicates that the door is locked.

· XLock: The input signal to the functional block which ask to block the door (where feasible). This
input can be evaluated on the edge of the signal or on its presence. Typically if the signal comes
from a control button this input is detected on the edge of the signal, while if it comes from a
supervision function is evaluated on the presence of the signal.

· XUnlock: The input signal to the functional block which ask to unlock the door (where feasible). This
input can be evaluated on the edge or the presence of the signal. Typically if the signal comes from
a control button this input is detected on the edge of the signal, while if it comes from a
supervision function is evaluated on the presence of the signal.

· XReset: If the functional block identify a fault it goes in an error state, from which it is possible to
exit only by activating this input, or by rebooting the module.

The parameters allow the following mode:
Parameter P0.

Page 86

The locking of the door is controlled from the XDL output. There are two mode of locking:
· Principle D. This is the default principle and implies that, without further action, closing the door

locks it automatically through an internal mechanism (typically spring, "locked by spring") and it is
unlocked by turning on the XDL output that typically feeds a solenoid that releases the locking
spring. This principle is considered safer in case of machinery where the danger continues even
after shutting down the machine (because of parts with inertia, or high temperature) since a power
failure does not allow for the immediate opening of the door.

· Principle E. Implies that the door closing normally remains unlocked and to lock it is necessary to
activate XDL output which typically provides to feed an electromagnet which locks the door. This
principle is frequently used to avoid wrong operations in machines such as the opening of a door in
the middle of a production cycle.

Parameter P1.
The lock request has three different modes:
· Request for block on the rising edge of XLock. It is the default mode and provides that, at the

detection of the rising edge of signal Xlock, the system goes in state 21 and there will remain for
the maximum time indicated in the parameter. If within this time XLocked becomes positive state is
set to 30 otherwise returns to 20.

· Request for block on the falling edge of XLock. It is identical to the previous case with the only
difference that the start of the process occurs on the negative edge of XLock.

· Request for block evaluated on the presence of the signal XLock. In this case, as long as this signal
remains active, the functional block remains pending confirmation of locking of the door and, when
XLocked becomes positive, goes to state 30, otherwise to the release of XLock, returns to state 20.

Parameter P2.
The unlock request has three different modes:
· Request for unlock on the rising edge of XUnlock. It is the default mode and provides that, at the

detection of the rising edge of signal XUnlock the system goes in state 31 and there will remain for
the maximum time indicated in the parameter. If within this time XLocked goes to 0 the state is set
to 20 otherwise returns to 30.

· Request for unlock on the falling edge of XUnlock. It is identical to the previous case with the only
difference that the start of the process occurs on the negative edge of XUnlock.

· Request for unlock evaluated on the presence of signal XUnlock. In this case, as long as this signal
remains active, the functional block remains pending confirmation of unlocking of the door and,
when XLocked goes to 0, the state is set to 20, otherwise, to the release of XUnlock, returns to
state 30.

Parameter P3.
XOut becomes positive in the state 30 but, if necessary, its activation may be slightly delayed due to
parameter P3. It may happen, especially for the very large shelters, that during their closing phase
the sensing devices are subjected to shaking such as to create rebounds on the electrical contacts.
The time adjustable via the parameter P3 will allow to set a small delay, from 0 to 2.55 seconds, to
allow the stabilization of the contacts before considering the guard closed.

Parameter P4.
Generally, the locking devices of the door can be unlocked only under the control of the supervision
electric system, and not autonomously. This is the default condition, with the parameter P4
disabled. In some cases, however, the machine manufacturer may provide that, specialized
operators having access keys, can unlock the protection locally (and in doing so open the contact
which detects the locking of the door) causing the immediate stop of the machine or a part thereof.
If this happens the LDC block detects a fault condition (state change was unexpected) and goes into
error state. If you want to admit the autonomous unlock of the device, you must activate the P4

Page 87

parameter that allows the direct passage from state 30 to state 20, controlled by the contact
Xlocked. Pay attention to the fact that, once it goes back in state 20 the locking system is
immediately unlocked. To reactivate XOut it will not be sufficient to close the door, but it will be
necessary to execute the locking function.

Parameter P5.
The functional block LDC detects some fault states, in particular that:
· In the state 10, with open door, the door is not even locked.
· In the state 20, with the door closed, the door is not even locked.
· In the states 30 and 31, with the door closed and locked, the door is not open.
If any of these conditions is detected, the functional block goes in its relative error state. To avoid that
rebounds on the electrical contacts or other small issues lead erroneously the function in an error state,
it is possible to set a minimum time, between 0 and 2.55 seconds, for which the error condition should
remain, before entering in error state.

Below to the functional block LDC there is the following state machine, valid for the D principle. In the case
of the E principle and the state machine is identical, only with inverted XDL output.

Page 88

States of LDC functional block and their meaning:
Start: This is the start state of the function. It checks the physical condition of the door. If the door is closed

and locked the variable BState is set to 30. If the door is only closed then only is set to 20 to 10
otherwise.

BState 10: It foreseen that the door is open and unlocked. In this state the XOut output of the function is
turned off and the XDL output is active (in the case of the principle D) or not active (in the case of
the principle E) for keeping the door unlocked, also when it is closed, so as to allow access to the
machine.

BState 20: It foreseen that the door is closed but not locked. The output XOut of the function is turned off
and the XDL output is active (in the case of the principle D) or not active (in the case of the principle
E) for keeping the door unlocked to allow access to the machine.

BState 21: This state happens when there is a request to lock the door and the door is closed but not yet
locked. The output XOut is kept turned off but the output XDL reverses its value for trying of locking
the door. The mode of entry and exit from this state depend on the parameter P1, "Block type".

BState 30: It foreseen that the door is closed and locked. The output XOut is activated with a delay equal to
the parameter P3, delay often useful to wait for the stabilization of the signals (contacts rebounds)
coming from the door. The XDL output keeps the door locked.

BState 31: This state happens after a request to unlock the door. During this phase XOut is active and XDL
reverses its value trying to unlock the door. The mode of entry and exit from this state depend on
the parameter P2, "Unlock type." If the unlock request is enabled on the edge of XUnlock signal, the
functional block tries to unlock the door for to the time set. If in this time XLocked input goes to 0
the state is set to 20 otherwise returns to 30. In the case instead the unlock request is evaluated on
the presence of the XUnlock signal then, as long as this signal remains active, the functional block
remains waiting confirmation of unlocking of the door and, when XLocked goes to 0, moves to state
20, otherwise to the release of XUnlock, returns to state 30.

There are then four different error states with code 100 to 103. In all these states, the XOut output is set to
zero and the XFault output is set to 1.The different error codes are useful during debugging, in order to
understand in what condition the fault occurred.
BState 100: Error that occurs in the state BState 10 (XClosed = 0 and XLocked = 1) if the door remains

locked longer than the time set in parameter P5.
BState 101: Error that occurs in the state BState 20 (XClosed = 1 and XLocked = 0) if the door remains

locked longer than the time set in parameter P5; it differs from the BState 100 error, because in the
state BState 20 the door is closed but not locked.

BState 102: Error that occurs in the state BState 30 (XClosed = 1 and XLocked = 1) if the door remains open
or unlocked longer than the time set in parameter P3.

BState 103: Error that occurs in the state BState 31 (XClosed = 0 and XLocked = 1), after that a request has
been made to unlock the protection, if the door is open and locked longer than the time set in
parameter P5. It indicates an anomaly in the protection unlocking mechanism.

The performance of XDL changes according to the state in which the error occurred.
To exit these states it is necessary to activate the XReset input or restart the module. In any case, the
functional block starts again from the Start state

Outputs of the functional block.
· XOut is the output which, when active, indicates that the door is closed and locked. It is 0 in all

other cases.
· XDL is the control output of the locking system. Typically it is connected directly to an output of the

module to drive the external system.
· XFault is active when the block has identified a fault condition of the door.

Page 89

· BState indicates numerically the status of the machine as described above. This output is useful not
only for debugging but also for signaling to the user that requests access to the machine. Using this
variable, it is easy to create signal like traffic lights according to the state of the machine.

5.7.3.25 Functional Block WAVE

Name WAVE Generates a waveform with variable period and ON time

Inputs none

Parameters Cycle time
On time

Wave period
Time, in the period, where the signal is ON

Outputs XOut The output wave

This functional block generates an infinite and costant
sequence of digital waves with a cycle time can be set
between 0.02 and 2.55 seconds and an ON time can be set
from 0.01 to period.

The main use of this functional block is to generate pulsed signals useful for flashing visualization of signals
or LED. For example by putting in AND an error signal with a signal generated by WAVE you will have that,
when active, the error signal is flashing.

Note that the internal clock of the module are not suitable to generate waves with the precision necessary
to perform a function of a clock.

5.7.3.26 Functional Block MUTE2

Name MUTE2 Functional block for the control of a Muting system with 2 beams

Inputs XDoor
XMute1
XMute2
XReset

The signal from the access control device (barrier).
The signal from the first muting device.
The signal from the second muting device.
The signal that resets the function in case of errors or other

Parameters TCont

TMax
TBlind

The maximum contemporaneity time allowed between XMute1 and
XMute2.
The maximum total time of muting
If specified, admits a Blind Time

Outputs XOut
XMute
XFault
BFault (optional)

Control output
Indicates the status of the muting function
Indicates whether the functional block has identified a state of Fault
Indicates the error code in case of fault

Page 90

This function allows the bypass (or muting) of a safe device which governs access (optical barrier,
mechanical devices, etc..) by signals from two inputs (optical sensors, switches) so-called muting.

The muting function is activated by a particular sequence (temporal logic) inputs. The sequence is linked to
more user-customizable parameters.

The typical application of a muting function provides the control of a gap as in the example that follows.
B = Barrier
S1 = First muting sensor
S2 = Second muting sensor.
Note that, since the input to the object in transit, the
point of intersection of the rays of the two sensors is
placed behind the barrier to prevent the bypass of the
system by a person who is confined to move to the
center of the path.
For more information, see the reference regulation
(eg EN 61496-1:2005).

The Muting function is activated only in response to a safe state of the inputs, ie after XDoor active while
XMute1 and Xmute2 are off. On the module startup is required that the state of inputs is in a safe condition
before you can activate the muting function.

The inputs of the block have the following functions:
· XDoor: The signal from the access control system (light curtain, device connected to the shelter). It is

active when the access is not busy (barrier free, shelter closed) or whatever it is in a safe condition.
· XMute1: The signal from the first muting device. It is active when the sensor is occupied (interrupted

photocell, operated switch).
· XMute2: The signal from the second muting device. It is active when the sensor is occupied

(interrupted photocell, operated switch).
· Xreset: The signal that resets the function in case of errors or other. This signal is only evaluated

when the functional block is in an error state. It is possible to choose whether the reset occurs on
the rising edge or on the falling edge of the signal by activating the options in the Properties
window of the MUTE2 block.

The parameters of the function have the following meaning:
· TCont: Indicates the maximum contemporaneity time allowed between XMute1 and XMute2. It can

be set from 0.5 to 4 sec. If the sequence of activation of XMute1 and XMute2 exceeds this time the
functional block crashes (XFault becomes active) with error code 101 (on output BFault).

· TMax: Indicates the maximum total time of muting. It’s range is from 5 to 255 sec. If the muting
function remains active for a total time greater than this parameter, the functional block crashes
(XFault becomes active) with error code 102 (on output BFault).

· TBlind: Indicates the Blind Time or the time when the Muting function remains active for a short
period after XMute1 or XMute2 were released. It is used to filter out spurious signals of the muting
sensors due to protruding parts or crevices present in the object in transit, such that the muting
function would terminate before sending the required functional block in error. It can be set from 0
to 2.55 seconds. Please note that, when used, this filter extends the muting time of the system. We
recommend that you keep this parameter to the minimum value dictated by the knowledge of the
machinery.

Outputs of the functional block:

Page 91

· XOut: It’s the control output of the function. When the muting function is not active Xout reply the
value of XDoor. When the muting function is active Xout is active regardless of the signal XDoor, or
bypasses it.

· XMute: Indicates the status of the Muting function. It’s active when the muting function is active
and vice versa.

· XFault: Indicates whether the functional block has detected a fault condition, such as exceeding the
maximum time provided for the muting function.

· BFault: This output is optional and can be disabled. If this is activated, in the case of Fault indicates
the error code, otherwise it is always 0.

The adjacent diagram shows the typical
sequence of input and output signals of a
functional block that performs a correct
action of muting. Note that the spurious
signal on XMute2 is filtered because of length
less than Tblind and contextually the Muting
function ends as soon as one of the two
Muting signals is restored plus the Blind Time.

5.7.3.27 Functional Block EDM

Name EDM Functional block for the control of an external device

Inputs XIn
XEdm
XReset

Enable signal of the EDM block
Feedback signal from the external device (EDM)
The signal that resets the function in case of error

Parameters TCont The maximum contemporaneity time allowed between XIn e XEdm

Outputs XOut
XFault

Output signal (activation of external device)
Signal indicating the detection of a fault condition

The function EDM (external device monitoring) allows you to check the integrity of the external devices th-
rough direct control of their state. The external devices are typically relays or contactors with guided con-
tacts and equipped with at least a normally closed contact to realize the circuit of EDM.
In the case in which one of the external devices is fault, the functional block EDM detects the abnormality
by comparing the input XEdm and the input Xin.
The following image shows an application example where the circuit EDM checks the integrity of the two
contactors K1 and K2 through the series of their normally closed contacts. The EDM circuit is at the
terminals T01 and I11:

Page 92

The logic of the functional block checks that the activation of XOut will lead to the deactivation of XEdm,
with a maximum contemporaneity time equal to TCon (adjustable from 0.01 s to 2.55 s). In the same way,
the functional block verifies that the deactivation of XOut will lead to the activation of XEdm, with a maxim-
um contemporaneity time equal to TCon.

The inputs of the block have the following functions:
· XIn: enable signal of the safe outputs; means active when the external device must be activated

(enabled).

Page 93

· XEdm: feedback signal from external device; this signal represents the state of the external device
connected to the safe outputs, and in case of relays or contactors, the circuit is realized by the
series of normally closed contacts of the devices.

· XReset: signal which controls the reset of the functional block in case of error. This signal is
evaluated only when the functional block is in error state. It is possible to choose whether the reset
occurs on the rising edge or on the falling edge of the signal, by activating the "Show reset input"
option present in the Properties window of the EDM block.

The parameters of the function have the following meaning:
· TCont: Indicates the maximum contemporaneity time allowed between Xin and XEdm. It is

adjustable from 0,01 to 25,5 sec. If the activation sequence of Xin and XEdm exceeds this time the
functional block goes in error (XFault becomes active).

Outputs of the functional block:

· XOut: It is the control output of the function. The output is active when the input Xin is active. It
remains active if within the time TCON occurs a deactivation of XEdm.

· XFault: It indicates whether the functional block has identified any condition of Fault, for example
for the overcoming of the maximum time established for control of the EDM.

5.7.3.28 Functional Block SERIAL

Name SERIAL Functional block responsible for the dialogue between the safety
module and the external PLC in order to monitor the status of sensors,
logic units or inputs in general that are connected to the module

Inputs XStart
XIn(n)

Type X input indicating the start of data transmission to the module
Type X input indicating the status of an external input

Parameters - Number of bits
to send
- Bit duration

- Number of
inter-character
bits
- IDLE state

- Type of
transmission

It can vary from 2 to 32 (1 bit = 1 state of an external input)

It is the time duration of the single bit (it can vary from 10 to 500 ms in
synchronous transmission, from 20 to 500 ms in asynchronous
transmission)
It is the number of stop bits inserted in the data transmission sequence
at the end of the bits to be transmitted (it can vary from 2 to 10)
IDLE status of the XOut data transmission cable (default status equal to
0, it is equal to 1 when the "Active status IDLE" box is flagged)

It can be synchronous or asynchronous

Outputs XOut
XClock

Data transmission output
Output used to synchronise the emitter and receiver (for synchronous
transmission only)

This functional block allows the safety module to send to an external PLC the status of external devices or
sensors, as well as the results of logical combinations coming from units of type AND, OR, GEQ, LDC, MUTE
etc., which are connected to the module, until a maximum of 32 inputs, using only 1 cable in the
asynchronous transmission and 2 cables in the synchronous transmission.

Page 94

This type of communication allows considerable savings in the wiring, as well as in the number of inputs
and outputs used in the PLC.

Through the synchronous transmission, it is possible to reach a data transmission speed equal to 100 bits
per second, through the asynchronous transmission the maximum transmission speed is equal to 50 bits
per second, however the advantage of this configuration is that only one cable is used.

The following image shows an example of connection of a SERIAL functional block with 3 inputs, and the
corresponding Properties screen in which it is possible to set the data transmission parameters.

Synchronous transmission
In the synchronous transmission, inputs have the following functions:

• XStart indicates when to start the data transmission: when it is 0, the transmission is deactivated,
when it is 1 the transmission sequence starts;

• XIn is the status of given data to be transmitted (0 or 1).

When XStart = 0, the functional block does not transmit data. When XStart = 1, the system performs a
status sampling of the various inputs, composes the corresponding bit sequence and starts transmitting it
through the XOut output. As long as XStart = 1, the inputs sampling is executed before each transmission
start of a sequence of bits, so that the functional block is able to detect any status changes of the inputs
that occurred during the transmission.

The data transmission takes place through the XOut output. The transmission frequency depends on the set
bit duration, which can be between 10 and 500 ms. The bit duration must be chosen according to the
programme processing speed by the PLC: for each data transmission cycle, it is advisable that the PLC has
the time necessary to receive and decode the information.

The XClock output has the function of synchronising the emitter (safety module) and receiver (PLC); it is in
state 0 when the data transmission is turned off.
When XStart = 1, XClock begins to transmit an alternating series of bits (1, 0, 1, 0, etc.) having a time equal
to the bit duration previously set.

Page 95

When the number of the bits transmitted by XClock is equal to the set number of bits to be transmitted
(from 2 to 32, equal to the number of sensors to be monitored) a number of inter-character bits is inserted
in the transmission, equal to the value set in the Properties screen, indicating to the receiver the end of a
data transmission sequence and the beginning of the next sequence.

The IDLE status of the transmission cable is normally off and is 0.
In this state, if the data transmission is deactivated (XStart = 0), the value 0 will be read on the XOut output.
When the IDLE status is set equal to 1, even if the data transmission is deactivated, the value returned by
XOut will be equal to 1: this setting is useful in case the receiver performs monitoring functions on the
emitter therefore, in case of any interruption of the electrical connection, the receiver is able to signal the
anomaly.

The following diagrams show the example of a 6-bit sequence to be transmitted with the two different IDLE
status network settings.

SYNCHRONOUS TRANSMISSION

IDLE status = 0
Number of bits to send = 6
Number of inter-character bits = 4

IDLE status = 1
Number of bits to send = 6
Number of inter-character bits = 4

Asynchronous transmission
In the asynchronous transmission, inputs have the same functions indicated in the synchronous
transmission.

This type of transmission is based on the Manchester Code1, which defines the values of bits 0 and 1 not as
static levels but as status transitions: when 0 must be transmitted, an upward transition of the signal
occurs, whereas when 1 must be transmitted, the coded signal undergoes a downward transition.

1 For more information see https://en.wikipedia.org/wiki/Manchester_code
Page 96

https://en.wikipedia.org/wiki/Manchester_code

Since it is a self-synchronising coding, the use of the clock signal (XClock) is not necessary in the Manchester
Code, therefore only one output cable (XOut) has to be connected to the safety module.

At the beginning of the data transmission, a start bit is inserted, in order to signal the beginning of the
sequence of data to be encoded to the receiver. Unlike the sensor status bits (XIn1, XIn2, etc.), the start bit
does not execute the state transition for its entire duration, so the value of the start bit is equal to 1 with
IDLE status set to 0 and equal to 0 with IDLE status set to 1.

The following diagrams show the example of a 5-bit sequence to be transmitted with the different settings
of the IDLE status network settings.

ASYNCHRONOUS TRANSMISSION

IDLE status = 0
Number of bits to send = 5
Number of inter-character bits = 4

IDLE status = 1
Number of bits to send = 5
Number of inter-character bits = 4

Notes for using OS type outputs
The SERIAL functional block can be used on all the safety modules of the Gemnis series, using both signal
outputs (O type) and safety outputs (OS type).

 Even if OS type safety outputs are used, the data transmission performed by the Serial functional
block must be used for signalling purposes only. The safety functions must be performed with electrical
circuits and hardware and software structures that reach PL or SIL safety levels required by the technical
standards EN 62061 and EN ISO 13849-1 for each application.

However, if OS type safety outputs are used, the PLC may misread the module's output signal if the
duration of the safe outputs deactivation pulses (necessary for detecting faults deriving from short-circuits)
is detected by the PLC programme execution cycle.
If OS type safety outputs are used for transmitting the output signals of the SERIAL functional block, it is
recommended to insert a timer filter with a set time greater than 1 ms or equal to 1 ms in the PLC
programme.

On the www.gemnis.com website, some examples of PLC programmes are available for decoding the
output signal from a safety module using the SERIAL functional block.

Page 97

5.7.4 Outputs
When a project has been created, depending on the module type, in the outputs area are automatically
placed objects that represent safety outputs and signal outputs of the module. If the outputs are not
connected via connectors, they remain off.

5.7.4.1 Safety Outputs
The safety outputs are represented within green rectangles. Two different types of safety output are
available: electronic or relay.
The relay safety outputs are represented by the presence of a connection point that goes to act on all
available contacts of the relay. This highlighted the mechanical connection between the various contacts.
Relays physically present within the module are always in pairs, piloted separately by the two-processor
module, and connected in series as evidenced from the drawing which represents contact pairs in series. In
case there are multiple relay outputs (relay pairs) more connection points will be available, each one that
refer to different groups of contacts. The electrical connections of relays individual contacts are
represented through the clamps, with their codes, on the dashed line right border that represents the
module. The safe output area extends further to the right to give the ability to add notes on the clamps.
Clicking with the right mouse button over the safe outputs area you can select the Properties tab (see
figure) where you can enter the desired text.

These descriptions are automatically included in the list of electrical connections (see Connections Tab).
As you can imagine to enable a relay safety output and all relevant contacts, just connect the safety output
connection point with the output of a functional block or a sensor.
Please note that the power supply for relay is taken from "24V" and "0V"terminals and that contacts have
always to be protected using external fuses.

Electronic safety outputs are likewise represented within a frame of the same color and by the presence of
one or more connection points, each corresponding to a pair of transistors. Each output of this type are
physically represented by two transistors separately controlled by the two-processor module, and
connected in series between the clamp "24V" and clamp "OSx”. The electrical control is done with
reference to the clamp "0V". Unlike the contacts of safety relays, transistor outputs are always independent
of each other. Even in this case you can add comments to the safety output clamps and such descriptions
are automatically included in the list of form electrical connections (see Connections Tab). Terminals "24V"
and "0V" are present only for clarity of electrical connections and cannot be commented.

Page 98

Please note that electronic safety outputs are internally protected against short-circuit and that
mechanisms are implemented to control continuously the integrity of the transistor output to avoid short
circuits to power supply or to other safety outputs. To carry out these controls in every safety outputs are
created in micro-interruptions (small breaks which stay for typically less than 0.5 msec, see technical
specifications) when the outputs are active. These micro-interruptions are not influent on passive loads
(contactor or similar) but can be read, and false the reading, in case the output are connected to a PLC. If
these outputs are connected to the inputs of another Gemnis module there are no problems because all
inputs of the modules of this series are filtered against micro- interruptions.

5.7.4.2 Signal outputs (unsafe)
Non-safety outputs are marked by a green color area with a yellow/black dashed line on the right side. This
dashed line is used only to remind the unsafe nature of such outputs (exactly as previously seen for some
Sensors). For each transistor is represented a connection point that may be associated with the output of a
functional block or directly with the output of a sensor. Even in this case you can add a comment to each
output terminal and such descriptions are automatically included in the list of electrical connections (see
Connections Tab). To do this simply click on the green area with the right mouse button and select the
Properties tab (see image below).

Unlike safe outputs, signal outputs take their power from clamp “A1”, and refer to clamp “A2” (ground) and
share their current with the same line that feeds the Test signals (Txx terminals). This line is controlled from

Page 99

a current limiter which, in case of overload (see technical specifications), blocks the current and put the
module in ERROR state.
The signal outputs are not subject to micro-interruptions as in the case of electronic safety outputs.

5.7.5 Connectors
Connectors are objects that connect the Sensor outputs with inputs of Functional blocks and their outputs
with the inputs of other Functional blocks and so on until the connection points of Outputs and in this way
create the logical structure of the Application Program.
The connector "transmit" or "carries" the information from a connection point output of an object in a
connection point entry of another object.
The connectors always start from an output connection point (of a Sensor or a Functional Block) and ends
in a input connection point (of a Functional Block or Output). To create a connection, simply click on the
starting point of connection and, holding down the button, move the mouse over the target connection
point, and then release the mouse.

The connection thus created is presented in its standard version as a "line" (there are other versions of
graphics connector, see below) that connects the two connection points. This line can be direct or broken
in which case has at its middle a small pane that lets you move the line (if you wish) optimizing its
positioning point. Each connection can be cancelled by clicking on it and pressing the delete key on your
keyboard or clicking on it with the right mouse button and then selecting Delete.
Some operations with the connectors can’t be performed as it would lead to a situation of non-
interpretability or instability of the program and Gemnis Studio would blocks they immediately. These
operations are:

· Connect connection points having underlying data of a different type (X, B, W). For example, you
cannot connect an output of type X with an input of type B as Gemnis does not allow implicit
conversion of different data types.

· Create connectors with one end not connected.
· Create connectors that connect inputs with inputs or outputs with outputs.
· Connect multiple connectors from various outputs in the same input (electric OR). If such an

operation was needed it is necessary to insert an intermediate functional block, e.g. a logical OR.
· Create connectors that connect the output of a functional block with an input of the same

functional block. These connections may lead to possible “oscillation” situations and are prohibited.
· Create a sequence of connections which create a ring between two or more functional blocks. For

example, given two functional blocks FB1 and FB2, it is forbidden to connect the output of FB1 with
an input of FB2 and then output of FB2 with an input of FB1 .

Standard connectors consist of straight lines. There is the possibility of having other graphic formats for the
connectors. To change the graphical format of a connector just select it by clicking on the intermediate
rectangle or on connection points where the connector ends and select Properties.

Page 100

5.7.5.1 Graphic format "minimal"
In this graphic format the connector is not represented, but are only created folding arrows and a reference
text. These connections are useful for functions that do not want to give evidence or to group functional
blocks in other locations.

5.7.5.2 "Soft" graphic format
In this graphic format the connector is represented by a curved line. It is a format that is not usual but very
elegant that we like to introduce.

Page 101

5.7.5.3 Connector controlled by User Dump
The State of a connector at run time can be controlled externally via a User Dumps command (see P07
Command (UserDump)). To indicate whether a connector must be checked, and in what position of the
output string the connector status must be inserted, it is used the “User Dump" tab in the properties of the
connector.

Page 102

As you can see in the picture to activate the control you need to set the flag "Enable UserDump" and then
indicate which position of the string to insert the connector status. If the data type of connector is X you
have to indicate the position of the bit in the string, if the data is of type B will have to indicate the byte
position and if the data is of type W, the position of word (2 bytes). The "ruler" in the form highlights with a
green colored bar the insertion point of data in the string. If some positions are already occupied they are
yellow colored. In the case of overlapping with other data the bar becomes red. Note that bits in the ruler
are represented for convenience in reverse order compared to the real position of the bit in the string, i.e.
bit 0 in the ruler is located at the left end of a byte, while in reality it is in the right end.

When a connector is controlled by User Dump a graphic symbol appears next to the starting point of the
connector. It is a small arrow and two data indicating respectively the Bytes and bits of the given position
within the string of User Dump. For example, the string "1-0" indicates that the value of the connector is
inserted into bit 0 of byte 1 of the string.

If from a connection point stars more connectors you just activate the User Dump only on one of them
because they all report the same information.
You cannot refer to User Dump an output connector from a label. But, because the label merely replicate
the given input connector, if you plan to check it just control the input connector.

If the User Dump Tab does not appear among the properties of the connector be careful not to have
selected more than one connector at a time.

5.7.6 Other items
Objects tab inserts several software features that are not related to those of the Sensors or Functional
Blocks. In this release of Gemnis Studio are objects "Note" and "Label".

5.7.6.1 Note
It is possible to insert directly into the desktop notes through the Note object present in the Desktop
Objects Tab.

Notes can be positioned as you want on desktop and, in addition to text, you can change the text color,
background color and transparency of every single note. The frame size of the note can be changed by
dragging the symbol at the bottom right corner of the note. Finally, the note can be collapsed/expanded by
clicking on the arrow in the upper-right corner of the box.
Default values for color and transparency of the note can be set from the Options menu (see General
options)

Page 103

5.7.6.2 Labels
The object label is a very powerful tool to create multiple connections, simplify the display, and help to
identify intermediate functions of the project, especially in the case of projects that span over multiple
pages.
The label can be thought of as a Functional Block of "identity" type , where each output corresponds to the
single input of the block, with the peculiar characteristic that the functional block can be graphically
"broken" to be designed in the proximity of the point of interest.

To create a label, simply drag the "Label" object from Desktop Objects tab.

Clicking with the right mouse button on the label, you can change the text or label name.
The label thus created shows a connection point of the input that can be connected to the output of any
sensor or functional block of the same type (X, B or W).

At this point, you can create a connection to the same label, creating a connection that starts from an input
connection point, and then releasing the mouse in an free area (easier to make than to say). If you have
created a single label it will automatically connect. If there are multiple labels it will be prompted with
which of them you intend to make the connection (see figure below).

Labels can be renamed at any time. Connection points of labels are normal connection points, and then
from a label can also leave more outbound connections as in the following example.

Page 104

5.7.6.3 Display
The Display object is useful to see more clearly the value of some variables during the simulation or
monitoring. Allows you to display the value of variables of type X, B, or W in different formats. It 'also very
useful if you do not want to use some output of a functional block. Since the compiler does not accept that
the functional blocks have unconnected connection points, if any output is not necessary, or need to be
controlled by userdump function (and therefore need a connector) you can connect this output to a Display
object.
These objects, depending on the type of the input, have different aspects selectable from the object menu.

· In case of digital input, the option of display visualization are four: the first (minimal) shows the
value, optimizing the space in the desktop, the second (numeric) shows with a digital number the
input value and the eventual label assigned by the user, the third (Green Led) shows a diode led
that turns green or grey depending on the state on or off, then the last, the forth (Red Led) is
represented by the same symbols except that the led is red instead of green.

· If the input is a Byte (B) or Word (W) type, the control can take the following graphical aspects: the
first (minimal) simply shows in the desktop the value and the units (multiplied for the coefficient
set), the second (numeric) is similar to the first but showing also the label, the third and the fourth
(Analogic and Digital) much more attractive represent respectively a classic analogic instrument
with pointer and a digital indicator bar. In this last two controls you have to set the minimum and
the maximum level and you can set also the minimum and maximum attention level. This is useful
if the user wants to have an immediate visual feedback of the assumed values of the variables.

If Byte (B) or Word (W) type display are used, in the Properties menu it is possible to set numerical values
called Multiplier and Offset in order to process the reading value of the sensor and to return an indicative
value of the physical quantity to be measured.
The sensor reading value is exclusively processed in a linear manner.

Page 105

Setting the Multiplier and Offset is very useful, for example, when using current transducer sensors, for
which the minimum value of output current is greater than zero Ampere. It is then possible to detect any
faults deriving from an interruption of the electrical circuit.

For example, if it is necessary to measure the angular rotation of a moving part connected to an electric
motor, with a sensor in a current with a range of output values between 4 mA and 20 mA.
The correspondence between the sensor output value and the position of the moving part is summarised in
the following table:

Output value from the current
transducer

Rotation of the moving part

4 mA 0°

20 mA 90°

To ensure that the Display object of Gemnis Studio, associated with the 4 - 20 mA current sensor, returns
the correct rotation value of the moving part, it is necessary to set the Multiplier and Offset values in the
Properties menu. They must be calculated with the linear algebra formula that identifies the equation of a
straight line passing through two points in the Cartesian plane:

x− x1

x2−x1

=
y− y1

y2− y1

If the x-axis indicates the current value of the transducer and the y-axis indicates the rotation of the moving
part, the previous equation becomes:

x−4
20−4

=
y−0

90−0

from which the straight line equation is obtained explicitly

y=5,625 x−22,5

The Multiplier value corresponds to the angular coefficient of the straight line, that is + 5.625, while the
Offset value corresponds to the ordinate at the origin, ie - 22.5.

Page 106

5.7.7 Simulation
Gemnis Studio is equipped with a very useful simulation environment to perform “virtual tests” on the
program that you're making and verify proper operation before installing the program on the module.

 Please note that the tests carried out on the Simulator does not replace real tests that should be done
with the module programmed before putting machinery into service.

To start the simulation of developed program just press the Start button on the task bar that appears at the
top of the desktop. You do not need to compile the program before, because the build action is invoked
automatically by pressing Start. If the program does not compile the simulation does not start.

The start of the simulation phase transforms your desktop and the ability to interact with it. During the
simulation the desktop area is blocked and it is no longer possible to add, remove, edit or move the
Functional Blocks, Sensors, Connections and Outputs. During this phase you can only simulate the
functioning of the module interacting with the Sensors and simulating conditions or real world operations.
In particular the Sensors at this stage display a colored rectangular area around the "external" part of
sensor (the part outside the dashed line that represents the module) that acts as an "input" area of the
main function of the sensor. Clicking on this area will run in sequence standard Sensor events. For example,
in the case of a sensor of type "button" for each click the sensor simulates the closure and then opening the
contact of the button, in infinite sequence. In the case of a modal switch with multiple positions, each click
advances the selector position and then, once you come to an end, start again.
Each of these interactions modify sensor output variables through the connectors, which will become the
input variables of the functional blocks, that evaluate them, and so on until such data will arrive to output
which will activate or not, simulating exactly what will happen in the module.
The transmission of information through the connectors is made visible by a color change of connectors. In
particular, the connectors remain normal coloring (black) when the underlying data is 0 (for any type of
connector) but change color when data is greater than zero. In this case the connector color varies
depending on the data type of the connector, and the connector using data of type B and W show, near the
starting point, the number of bits and the actual value of the underlying variable is enclosed in parentheses.

For example, in the picture you can see some X type connectors off (with value 0) black color, X type
connectors (with value 1) green color and a B type connector blue, whose underlying 8 bit variable,
currently contains the value 2 (decimal).

Page 107

The colors displayed are the default ones but they are freely settable by, see the menu Tools → Options →
Monitor.

5.7.7.1 Time in simulation
From the moment of simulation start-up, a system clock shows the time elapsed from the beginning of the
simulation. At the same time activate the buttons Pause and Reset and buttons which changes the
simulation speed, x0,1, x1 and x10.
At any time you can press Pause and pause the simulation, for example to analyze calmly a particular state
of the machine, or to make simultaneously changes in input sensors. If you want to resume the simulation
you can press again the button Start.
Pressing the button Reset Gemnis Studio exits the simulation mode back to the software configuration.

At the start of the simulation, when the x0,1 button has been selected, the simulation process does a
general calculation of all variables and functional blocks sensors and an update of screen values of all
variables at each step of the simulation. The label x0.1 indicates that the on-screen simulation is
represented with a speed of about one tenth of the actual speed, where "about" is highly dependent on
computer resources where Gemnis Studio is installed and the number of active programs. For a precise
statement of simulated time you only have to evaluate the data from the watch values of the simulator.
Selecting the x1 box the simulation process is sped up because the screen update is performed every 10
cycles of general recalculation. That is, while the internal variables are recalculated normally in steps of 10
msec, the screen update of these values is only performed every 100 msec. In this case the simulated time
becomes similar to the real-time , with the limits previously indicated. Finally, selecting the x10 the screen
update is made every 100 simulation steps (1 second). Note that, in cases x1 or x10, system clock is
updated at video with the same frequency and then keep in mind that, even if not seen to update the
figures of hundredths or tenths of a second clock, the system is always simulating the module with steps of
10 msec.

5.7.7.2 Start conditions and special states of sensors
At the start of simulation, each sensor starts in a default state, depending on the type of sensor. For
example the mushrooms for emergency stops were provided for what is believed to be the normal working
condition, with the contacts closed (non-emergency) then with their output variable (XOut) active, while for
example the start buttons are provided to start with open contacts state, with the variable output not
active. The user can set this starting condition by changing the value of the variable "Default value for the
default output" in each Sensor Outputs tab.
By modifying these variables, it is possible to carry out simulations with very different machine start
conditions and simulate the behavior of the module in case of failures (e.g. pushbuttons contacts stuck) of
some devices.

The interaction of the Sensors through the blue areas are useful and practical for the general operation but
in some cases, you might want to simulate non-standard operations or fault conditions detected by
Sensors. For this reason, in simulation time, next to each sensors output variable, appear small buttons that
allow you to set the values of the individual variables and to verify the behavior of the system under these
conditions. Variables of type X have a small pushbutton with text "01", as they can take only one of these
two values. Clicking on the button and then the corresponding output sensor continues to alternate
between these two values.
Variables of type B and W have a small pushbutton with text "+-" and clicking on this button opens a small
window where you can input the desired value.
Finally, the standard output fault XFault, presents a special button that can be activated only once and to
cause some events (not visible) to the module.

Please note. Through these buttons during the simulation, you can also enter values not foreseen by the
current configuration. For example, in the case of a modal switch with 4 inputs, during simulation time is

Page 108

possible to input a value greater than 4, although this actually will never happen. It have been preferred to
leave this possibility to user in order to evaluate cases currently not foreseen.

5.7.7.3 Simulated ERROR conditions
In case the XFault variable (or any other variable) is linked to an ERROR functional block, the activation of
the XFault will set the Error condition. In this case, the simulation is stopped at the instant where the first
ERROR function is invoked and in the log box is highlighted an Error event (simulated) with its error code.
You will also note that the outputs are "disconnected" even in cases where the control connector has value
1, while this does not happen for the signal outputs.

In reality, the module will set itself in exactly the same way in safe state, by turning off the safety outputs
and keeping active signal outputs while the error code highlighting will be done via the two blue LEDs of
processors (see also the ERROR functional block).
Recovery from the ERROR state condition is not possible. You can just restart the simulation from the
beginning.

5.8 Connections Tab
In the Connections tab are listed all physical terminals of the module and you can link to each of them one
descriptions and then print a report for technicians who must electrical connect module to machinery.

Page 109

The "warning" field is used just as a reminder. In this field the symbol appear to indicate terminal attention
that were recently modified in the project, e.g. after the insertion of a sensor using that terminal. These
symbols disappear after editing text in row or after a saving the project.
"Topographic" field is connected with descriptions on the Desktop. For instance, changing the description
of clamp "O01" on your Desktop, you will result that same description will appear in the field in this tab and
vice versa.
The "Notes" field is freely editable.
The printing of this report is available from the menu "Prints" (see Prints).

5.9 Messages Tab
In Messages tab are stored the messages eventually transmitted by the functional block MESSAGE (see
Functional block MESSAGE).

5.10 Monitor
You can monitor in real time the functioning of one or more modules Gemnis through the Monitor
function.

In order to observe the operation of a module you need to connect it with the integrated USB port and
then press Update Connections.

Page 110

Once refreshed the list of active ports, in the area of available connections, if the module is turned on, you
will see a button that contains the graphic symbol of the USB port and the COM port number (PC)
associated, status and program name running in the module.
Clicking on this button, on top of the desktop, will opens the “Monitor” form, which contains important
data of the module. Downloading data typically requires 4 or 5 seconds from the time of the opening of the
form.

As shown in figure, in the form Monitor you can see:
1. An area containing information relating to the module and to its state, in particular:

a. The status of execution of the module RUN, SET, or ERROR.
b. The version of Kernel.
c. Serial number of the module.
d. The code product of the module.
e. The value of the internal timer. Is reset at each switch and can be set by commands via USB

(see System commands).
f. Two indicators of the maximum time spent in each of the two processors (master and slave) to

run the Application Program from the instant of the start of the module. The data is constantly
updated, and is reset only by a restart of the module.

g. Two indicators related to the internal temperature of the module detected independently by
the two processors.

2. Area relative to the currently executing program or otherwise loaded into the module. In this area you
can collect data of the main screen of the saved project:

Page 111

a. The name of the running project. In this case, the icon is a shortcut that allows you to
immediately open the project with that name, only if it is present in the default folder.

b. The date of the Project (the date specified in the project file, not the date of loading in the
module).

c. The name of the user who created the project.
d. The extra data user
e. The current access level set in the module. Even in this case, the icon represents a link that

allows changing the access level. If activated, the link opens a window for setting a password
that is immediately sent to the module. If the password is managed and verified by the module,
then it will set the appropriate access level.

f. The digital signature of the Application Program.
g. Project validated : indicates whether the project executed by the module has been validated or

not

In the form, there is also an icon of the module useful for identifying the connection status and a "Reboot"
button that lets you restart the module directly from Gemnis Studio when the module is in SET or ERROR.

Finally, if Gemnis Studio finds that you can view the internal state of the module, a new tab + Desktop
appears (see later).

Gemnis Studio is capable of managing multiple monitors simultaneously with the only limitation of
computer resources and screen space to display information. If a module is disconnected or reconnected
while your Monitor tab is open, just listed data are deleted immediately. If the module is reconnected, you
can update the data both by closing and reopening the monitor window, or by clicking with the mouse on
the module symbol, which attempts an automatic reconnection to the module. In any case, be aware that
the speed of reconnection is affected also the performance of the operating system of the computer.

5.10.1 Execution state control within the module
By default, Gemnis Studio opens only the form monitor about the main data of the module. If the project is
in the working directory, the digital signatures of the two programs overlap and the project is not password
protected for viewing, then it will be possible to see the internal state of the module function. If the project
is password protected, it will be immediately request (for more information see the note below).

Pressing the + Desktop button, you can see the graphical representation of the project, in a way very similar
to what happens during the simulation, with the main difference that in this case you can’t interact but
only observe the (real) operation of the module. The values of the inputs and outputs of the sensors, the
functional blocks, and the outputs of the module are graphically drawn in exactly the same way as a
simulation session.

Page 112

Also on this tab, you can perform Zoom & Pan functions. You can return to the standard display by clicking
on the Zoom icon, in the toolbar at the top of the form.

Note: As the module does not have enough memory space to store the graphic descriptions of Application
Program, in order to get access to the graphical display in the computer should be present the Project's
PZZKE file. Because a project with the same name can be compiled and tested several times, to correctly
show the module state, the question arises about, given a project name, what is the correct graphical
representation.
Gemnis Studio show the graphical representation of an Application Program only if exist a Project file with
the given name and the digital signs of both are the same.
To work around the problem of eventual overwriting of Application Program already sent to the module,
Gemnis Studio allows you to save a Backup copy of the Project file for each transmission of Application
Program to the module (see General options). So assuming for example that a program named "Test" has
signature F1 and build date 20 July 2012 hours 14:20:00, at the time of submitting the program to the
module (if the automatic backup option has been set) will create a file with name "Test-12-7-20-14-20-
00.PZZKE" containing a copy of the Test program, in the backup directory. If the program is modified at
15:00:07 that the signature becomes F2, sending it to the module will create a file called "Test-12-7-20-15-
00-07.PZZKE" and so on. When you connect to a module, and by pressing + Desktop you requires the
viewing of its internal state, Gemnis Studio search in the default folder a Project file which has the same
name as the and the same digital signature of the Application Program and, if that file exists, uses it for
creating the graphical representation of the operation of the module. If this file does not exist, you can
search in the backup file, the correct one. In case you want to restore a Backup file, to edit it you will need
first to copy and rename the Backup file by deleting in the file name the part of the date. For example, in
the case mentioned above you will have to copy one of the two files from the backup directory to your
working directory and rename the file to "Test.PZZKE".

 The digital signature is calculated from the data necessary for the correct operation of the module.
These data do NOT include informative data as comments, notes or the graphical position of objects in
the desktop. Therefore, if a program with signature F1 changes such as adding notes or moving functional
blocks or connections, but keeping unchanged Sensors, Functional Blocks and Connectors, the digital
signature of the file will always be F1 because the global function the module carried out is the same. Can
then happen that two writings on the module may have the same digital signature. At this point if the
user cancels the "cosmetic" changes and then reconnects to the module, the Gemnis Studio Monitor for
graphical representation will be the last-saved version of a Project.

Page 113

 Updating data in video does not happen in real time and update period is approximately 0.5 seconds
(the speed of the computer on which you installed Gemnis Studio can stretch this time). Anyway, the
shown data refer to a single cycle execution of the application program and are all temporally consistent.

5.11 Prints
From menu Projects → Prints are available the reports of Gemnis Studio.
Gemnis Studio is a multi-project environment and, as a result, if you have multiple projects open at the
same time, reports will refer to the active project.

5.11.1 Validation Report
The validation report contains summary information of the entire project. The report contains information
about:

• General Data of the project
• Parameters of functional safety
• Data on the sensors used
• Formal evaluation
• Front image of the module
• Information on terminals

5.11.2 User Program Report
The report of the user program is visible in the picture. This report is generated according to the "Desktop
Settings" that define the size and orientation of Desktop pages so that there is a correlation between what
you see on screen and what you print.

Page 114

In the Title block appears the data set in the Tab "Project Data", “Title block data” (see Projects Menu).

6 System commands

6.1 Introduction
Once programmed a family Gemnis module is able to communicate and execute commands that comes
from the USB port or any COM boards. These commands are called "System Commands".
Some commands can be executed only through the USB port, while others may be carried out both through
the USB port or the COM port. Finally, some commands can be set only by one of the two ports in order to
avoid possible mistakes.

If you intend to send commands to the system through the USB port then the transmitting system must set
the USB as a serial port emulation with the following parameters:

Speed: 9600 baud
Parity: N
Data: 8 bit
Stop: 1 bit
Flow control: Xon/Xoff

Page 115

6.1.1 System Commands format and limitations of use
The system commands have a very simple format, to use the minimum of resources (computation time,
transmission bandwidth) of the module. They can be of two types:

· Run commands having format like "Pxx"Cr where xx is the code of the command and is the Cr
character ASCII Carriage Return (0x0D) or the combination of Carriage Return and Line Feed (0x0D,
0x0A). "Quotes" should not be written to the command. To these commands the module responds
with strings like "[Pxx =" followed by the requested data and terminated by the string "]Cr".

· Writing commands having format like "Wx"Cr where x is a string.

All responses provided by system commands begin with the character "[" and end with the character "]"
followed by Carriage Return character (Cr). Because the Application Program also can send messages by
functional block “Message”, the use of the characters "[" and "]" in all responses to the system commands
allows distinguishing responses to system commands from messages generated by the Application
Program.

 All numeric values in system commands are expressed in hexadecimal format.

Not all commands are executable by any user at any time. The program loaded into the module can be
password protected to limit the possibility of interaction with the module. Some commands can be
executed or less depending on the State (RUN, SET, ERROR) of the module.

 Some commands are reserved for Gemnis Studio. The execution of arbitrary commands in SET state
when the module is not protected by password may result in cancellation of the program included in the
module.

6.1.2 Commands executable in RUN state
The following commands can be invoked when the module is in RUN state

· P00 = base data = module state, current access level, eventual error code
· P01 = password setting to change access level
· P03 = fixed program data = Program Number, Version, Signature, Date of program
· P04 = fixed program extra data
· P06 = enable/disable USB messages
· P07 = invoke UserDump
· Writing Data commands (WD, W?, WK, WE)

6.1.3 Commands executable in SET state
The following commands can be invoked when the module is in SET state

· P00 = base data = module state, current access level, any error code
· P01 = password setting to change access level
· P03 = fixed program data = Program Number, Version, Signature, Date of program
· P04 = fixed program extra data

6.1.4 Commands executable in ERROR state
The following commands can be invoked when the module is in ERROR state but only if as a result of errors
due to activation of a functional block ERROR or other external errors handled by the module. Are excluded
then error States due to internal failures of hardware and software module.

· P00 = base data = module state, current access level, any error code
· P03 = fixed program data = Program Number, Version, Signature, Date of program

Page 116

· P04 = fixed program extra data
· P07 = invoke UserDump

6.2 System Commands list
6.2.1 P00 Command
Command format: "P00"Cr
Recalls the base data of the module.
The response format is:

"[P00 = x, l, ee]"Cr
where:

1) x = 1 if module state = RUN, 2 if state = SET, 3 if state = ERROR
2) l = code of current access level, ranges from 0 to 3
3) ee indicates the error code if the module state is ERROR, otherwise it is 0.

6.2.2 P01 Command
Command format: "P01 = xxxxxxxxxxxxxxxxCr
Send the password x (16 ASCII characters) to access level 3.
If the password is valid the access level 3 is set.
The response format is:

"[P01 = xx, n]"Cr
where:

1) xx = “OK” if the password was found or “NO” if it is not found
2) n = actual access level. If the password has not been found remains the previous level.

6.2.3 P03 Command
Command format: "P03"Cr
Fixed data of the Application Program.
The response format is:

"[P03 = nnnn, vv, ffffffffffffffff, yyyymmddhhmmss]"Cr
where:

1) nnnn = number of the program (only for pre-programmed devices). The data is in hexadecimal
format, then for example “P100” is reported as “0064”.

2) vv program version
3) ffffffffffffffff indicates the digital signature of the file (16 ASCII characters)
4) yymmddhhmmss = year, month, day, hour, minutes, and seconds. Date program (each two

characters without hyphens or spaces between them), a total of 12 hexadecimal characters.
If the program is not loaded in memory these data are all zero.

6.2.4 P04 Command
Command format: "P04"Cr
Extra program data. These are data that Pizzato Elettrica or the customer want to associate with the device.
For example, batches, user codes, etc.
The response format is:

"[P04 = pppppppppppppppp, uuuuuuuuuuuuuuuu, xxxxxxxxxxxxxxxxxxxxxxxx]"Cr
where:

1) p = project name (16 ASCII characters)
2) u = user name (16 ASCII characters)
3) x = user data (24 ASCII characters)

6.2.5 P06 Command
Command format: "P06=x"Cr
Enable (x=1) or disable (x=0) the trasmission of user messages in the USB port.

Page 117

The response format is:
"[P06=1]"Cr if user messages have been enabled or
"[P06=0]"Cr if not.

6.2.6 P07 Command (UserDump)
Command format: "P07"Cr
Request the UserDump that’s the customized dump (depends on program to program) of a subset of the
module data. At the time of receipt this command creates an instantaneous copy of the data on selected
connectors in the program (see Connector controlled by User Dump) and then they are compacted into a
16 byte string and sent.
The response format is:

"[P07 = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx]"Cr
where:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx = 16 bytes of data, ASCII encoded (32 ASCII characters in total)

This command allows an run-time external control about the values of some module internal variables to
process or replicate these values on PLC or synoptic panels. Whenever the external controller will perform
a refresh of the module State, it sends the command "P07" and then waits for the response string to
translate in the format of the controller and process it.

 Including brackets and Cr character the string has a length of 39 bytes that, at 9600 baud, are about 40
msec. Since the execution cycle of the application program amounts to 10 msec this implies that it is not
possible to have a real-time control on controlled variables. Note that even if the transmission of this
command should take place through a high speed COM board (eg. RS-422 to 115,200 baud) in each case
the data packet originated to 9600 baud and then the constraint remains.

6.3 Writing data into the module
Gemnis series modules allow the possibility to send some data from the outside world to the module and
to ensure that such data are evaluated by the Application Program. To do this requires the following
conditions:

1) Who wrote the application program has expressly provided this opportunity by enabling a
communication Sensor (via the USB port or a COM board if there is one) to write data into the
module by using protocol "Safe".

2) Who wrote the application program has created connections between output connection points of
communication Sensor and the rest of the Application Program.

3) A particular protocol is used to write data in the module.

With regard to points 1 and 2, please refer to the chapter on the communication Sensor (see USB Sensor).
Here it is recalled only that this Sensor allows the creation of 8 data (user-defined type) that are evaluated
by the Application Program exactly how if they was output data from Sensors connected to physical
devices.
The communication protocol involves 3 steps:

1) External controller (PC, PLC) writing data to a buffer in the module. This step can be repeated several
times (maximum 7).

2) Read back by the external controller of the module buffer content plus a code to be used as
confirmation code. This step allows the verification by external controller if values were written
correctly in the buffer.

3) Confirmation by the external controller of the transfer of data from the module buffer to the Sensor
outputs by sending the confirmation code or cancellation of the buffer in case the data is different
from what was sent.

The process is transactional since it allows simultaneously data writing in multiple connection points of the
communication Sensor.

Page 118

The process of writing data in the module can be executed only from one port (USB or COM) in the project.
The choice of the Sensor where to activate the "Safe" protocol corresponds to the choice of which port
should be used.

 To avoid the risk that the data to be write in the module may be modified during transmission it is
required the full implementation of the Protocol described above. In particular, it is essential that the
external system that controls the data to be written in the module verify the correctness of the data in
the buffer (point 2 of the Protocol) before proceeding to the confirmation of the transaction.

6.3.1 WD Command
The command for writing data in the module buffer has the following structure:

"WDxx=yy"Cr for variables of type X or B or
"WDxx=yyyy"Cr for variables of type W.

where:
xx = the index of the variable. Values range is allowed from "00" to "07" where 00 is the first
variable.
yy = variable value (in hexadecimal). The values are allowed:

"00" or "01" for variables of type X
from "00" to "FF" for variables of type B
from "0000" to "FFFF" for variables of type W

The write command execution does not give any reply.

In practice this command allow to write in the module buffer that variable which index is xx must take the
value yy.
The buffer capacity of the module is seven data so this command can be repeated up to 7 times before
using a confirmation command or an erasing command. When the buffer is full, more buffer write
commands will not be executed. If in the same transaction the same variable is assigned several times, the
last value inserted will be used.

6.3.2 W? Command
This command is used to verify the data in the buffer and has the following structure:

"W?"Cr
This command has a response format like:

“[W? xx1=yy1,xx2=yy2, .. ,K=zzzz]”Cr
where:

" xx1=yy1,xx2=yy2, …, xx(n)=yy (n)" is the content of the intermediate buffer with data written via
the WD command.
"zzzz" is the confirmation code, i.e. the data to send to the module using the WK command when it
have been verified that the data in the buffer are correct and you want confirm their writing in the
variables of the sensor.

6.3.3 WK Command
The transaction confirmation command has the following structure:

"WK=zzzz"Cr
where:

"zzzz" is the transaction confirmation code obtained from a command W?
This command response:

"[WK=OK]"Cr if the command was successful.
"[WK=NO]"Cr if the command goes wrong, for example because the transaction confirmation code
is incorrect.

Page 119

After execution of the WK command, module buffer is emptied both the command has been successful or
not.

6.3.4 WE Command
The erasing of the intermediate buffer has the structure:

"WE"Cr
This command response:

"[WE = OK]"Cr if the command was received and executed.

This command typically is executed only when the data verification in the module buffer using the
command W? shows that the buffered data is incorrect and it is therefore necessary to flush the buffer to
restart the whole process.

6.3.5 Example of transaction
Suppose you have created a project where there is a sensor in which the first three output variables have
been defined as Xout0, BOut1, WOut2. The three variables have so index 0, 1 and 2 and are of type X, B and
W.
Suppose you want to set these variables simultaneously, to decimal values: 1, 254 and 13743.
The completion of the transaction is carried out through the following sequence:

Write command Reply from module Comment

WD00 = 01 Write command: value 1 in the 0 index variable, i.e.
on XOut0.

WD01 = FE The decimal value 254 shall be written in
hexadecimal format i.e. FE

WD02 = 35AF The decimal value 13743 must be written in
hexadecimal format, i.e. 35AF

W? [W? 00=01,01=FE,02=35AF,K=01EC] The module responds with the contents of the
buffer and the hexadecimal confirmation code
01EC.

WK = 01EC [WK=OK] At this time the command was executed, and the
three values were written in the variables XOut0,
BOut1 and WOut3.

7 Support
7.1 Website
Support for this family of products is given on-line from the web site www.gemnis.com where you can:

· Download the installation package from Gemnis Studio (after registration)
· Download supporting files (such as the Microsoft CLR.NET)
· Get the most up-to-date version of the manual (this document)
· Get the most current version of the file that contains the list of modules available for purchase
· Other support information that will be gradually added

7.2 Technical support
A technical support service is currently provided free for users who have registered on \the site and have
activated Gemnis Studio through the activation procedure (see Demo mode and Standard mode). Please
note that the procedure for activating the software needs only the physical link with a Gemnis series
module.
Technical support is provided through:

· Via phone at + 039-0424-470930 in Italian and English
Page 120

http://www.gemnis.com/

· Via mail to the address tech@pizzato.com in Italian and English

The required information must be relevant to the functionality of the module. Pizzato Elettrica doesn’t
offer a consulting service based on the customer’s application.
Pizzato Elettrica reserves the right to change the terms of service at any time and at its indisputable
discretion.

7.3 Making of pre-programmed modules, series CS MF
Pizzato Elettrica is able to provide a service of pre-programming Gemnis series modules. Upon customer's
request Pizzato Elettrica can create module that leave the factory pre-programmed with a specific project.
If the customer project does not need the USB communication port, it is also possible to provide a pre-
programmed module without such port, for cost savings and to prevent product any type code
modification.

The possibility of creating pre-programmed modules is under trade agreements (minimum quantities are
required) and communication of the project by the customer.

The development process in this case would be as follows:
1. The customer, with Gemnis Studio and a programmable module (e.g. CS MP202M0), develops and

tests a project on a machine until it fully meets its needings.
2. The customer sends to Pizzato Elettrica a copy of the project.
3. Pizzato Elettrica assigns a code to the project, for example "P150"
4. If the customer project does not need USB port, Pizzato Elettrica will pre-program required modules

with code "CS MF202M0-P150” (note the letter "F") without the USB port. In case the USB port is
necessary in the code would become "CS MP202M0-P150”.

5. Pizzato Elettrica send pre-programmed modules to the customer.
Pre-programming is suitable for modules that must be installed on machinery produced in series, where
the software development process is stabilized and where the customer wants to minimize factory efforts
(programming modules, software management) and to manage the module like a components, with a
single product code.

Page 121

mailto:tech@pizzato.com

	1 Introduction
	2 General characteristics
	3 Symbols, application limits and limits of liability
	3.1 Graphic symbols and terms used in this manual
	3.2 Application limits
	3.3 Prerequisites
	3.4 Intended use
	3.5 User's responsibility
	3.6 Management of damaged or faulty products
	3.7 Validation and periodic tests
	3.8 Directives and standards
	3.9 Limits of liability

	4 Gemnis line modules
	4.1 Introduction
	4.2 General hardware characteristics
	4.3 Detection principles of external inputs and faults
	4.3.1 General principles for external fault detection
	4.3.2 Safety devices
	4.3.3 Sensors

	4.4 Modules state
	4.4.1 POWER-ON State.
	4.4.2 START State.
	4.4.3 SET State.
	4.4.4 RUN State.
	4.4.5 ERROR State.

	4.5 Module state display by P1 and P2 status LEDs
	4.6 List of products
	4.6.1 USB Port

	5 Gemnis Studio
	5.1 Prerequisites for performing of Gemnis Studio
	5.2 Software version
	5.3 Introduction
	5.4 Tools Menu
	5.4.1 General options
	5.4.2 Programming by rows of one or more modules
	5.4.3 Extracting a program from a module

	5.5 Modules Menu
	5.6 Projects Menu
	5.6.1 Project Tab
	5.6.2 Application program and digital signature
	5.6.3 Password
	5.6.3.1 Protection Password for the module
	5.6.3.2 Password protection of the project file
	5.6.3.3 Password protection also to project view

	5.6.4 Migration of programmes

	5.7 User Program Tab
	5.7.1 The Desktop.
	5.7.2 Sensors
	5.7.2.1 S1E Sensor
	5.7.2.2 S2ED Sensor
	5.7.2.3 S1C Sensor
	5.7.2.4 S2CI Sensor
	5.7.2.5 S2CD Sensor
	5.7.2.6 SSM Sensor
	5.7.2.7 STHC Sensor
	5.7.2.8 STHA Sensor
	5.7.2.9 SSE8 Sensor
	5.7.2.10 SPE3 Sensor
	5.7.2.11 SUSB Sensor
	5.7.2.12 STIN Sensor
	5.7.2.13 SAN1 Sensor
	5.7.2.14 SAN3 Sensor
	5.7.2.15 SSP2 Sensor
	5.7.2.16 SSP4 Sensor

	5.7.3 Functional blocks
	5.7.3.1 Functional block AND
	5.7.3.2 Functional block OR
	5.7.3.3 Functional block XOR
	5.7.3.4 Functional block NAND
	5.7.3.5 Functional block NOR
	5.7.3.6 Functional block NXOR
	5.7.3.7 Functional block NOT
	5.7.3.8 Functional block TRUE
	5.7.3.9 Functional block FALSE
	5.7.3.10 Functional block SET/RESET
	5.7.3.11 Functional block MEM
	5.7.3.12 Functional block START
	5.7.3.13 Functional block POWER ON
	5.7.3.14 Functional block TRIGGER
	5.7.3.15 Functional block DELAY
	5.7.3.16 Functional block FILTER
	5.7.3.17 Functional block PULSE
	5.7.3.18 Functional block CLOCK
	5.7.3.19 Functional block ERROR
	5.7.3.20 Functional block MESSAGE
	5.7.3.21 Functional block EQU/GEQ/LEQ
	5.7.3.22 Functional block COUNTER
	5.7.3.23 Functional block LKTBL
	5.7.3.24 Functional block LDC (LOCK DOOR CONTROL)
	5.7.3.25 Functional Block WAVE
	5.7.3.26 Functional Block MUTE2
	5.7.3.27 Functional Block EDM
	5.7.3.28 Functional Block SERIAL

	5.7.4 Outputs
	5.7.4.1 Safety Outputs
	5.7.4.2 Signal outputs (unsafe)

	5.7.5 Connectors
	5.7.5.1 Graphic format "minimal"
	5.7.5.2 "Soft" graphic format
	5.7.5.3 Connector controlled by User Dump

	5.7.6 Other items
	5.7.6.1 Note
	5.7.6.2 Labels
	5.7.6.3 Display

	5.7.7 Simulation
	5.7.7.1 Time in simulation
	5.7.7.2 Start conditions and special states of sensors
	5.7.7.3 Simulated ERROR conditions

	5.8 Connections Tab
	5.9 Messages Tab
	5.10 Monitor
	5.10.1 Execution state control within the module

	5.11 Prints
	5.11.1 Validation Report
	5.11.2 User Program Report

	6 System commands
	6.1 Introduction
	6.1.1 System Commands format and limitations of use
	6.1.2 Commands executable in RUN state
	6.1.3 Commands executable in SET state
	6.1.4 Commands executable in ERROR state

	6.2 System Commands list
	6.2.1 P00 Command
	6.2.2 P01 Command
	6.2.3 P03 Command
	6.2.4 P04 Command
	6.2.5 P06 Command
	6.2.6 P07 Command (UserDump)

	6.3 Writing data into the module
	6.3.1 WD Command
	6.3.2 W? Command
	6.3.3 WK Command
	6.3.4 WE Command
	6.3.5 Example of transaction

	7 Support
	7.1 Website
	7.2 Technical support
	7.3 Making of pre-programmed modules, series CS MF

